Additive edge labelings

Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dickenstein, A., Tobis, E.A.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein
Aporte de:
Descripción
Sumario:Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to answer these questions and to obtain all possible solutions. © 2009 Elsevier B.V. All rights reserved.