Additive edge labelings
Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to to...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein |
Aporte de: |
Sumario: | Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to answer these questions and to obtain all possible solutions. © 2009 Elsevier B.V. All rights reserved. |
---|