Small Furstenberg sets

For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff me...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Molter, U., Rela, E.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter
Aporte de:
Descripción
Sumario:For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff measures to give estimates on the size of these sets. Our main result is to obtain a sharp dimension estimate for a whole class of zero-dimensional Furstenberg type sets. Namely, for hγ(x)=log-γ(1x), γ>0, we construct a set Eγ∈Fhγ of Hausdorff dimension not greater than 12. Since in a previous work we showed that 12 is a lower bound for the Hausdorff dimension of any E∈Fhγ, with the present construction, the value 12 is sharp for the whole class of Furstenberg sets associated to the zero dimensional functionshγ. © 2012 Elsevier Ltd.