Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X=H,F,Cl,Br,I) compounds

In the present work, numerical results of the nuclear spin-rotation (SR) tensor in the series of compounds HX (X=H,F,Cl,Br,I) within relativistic 4-component expressions obtained by Aucar [J. Chem. Phys. 136, 204119 (2012)10.1063/1.4721627] are presented. The SR tensors of both the H and X nuclei ar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aucar, I.A., Gómez, S.S., Melo, J.I., Giribet, C.C., Ruiz De Azúa, M.C.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00219606_v138_n13_p_Aucar
Aporte de:
Descripción
Sumario:In the present work, numerical results of the nuclear spin-rotation (SR) tensor in the series of compounds HX (X=H,F,Cl,Br,I) within relativistic 4-component expressions obtained by Aucar [J. Chem. Phys. 136, 204119 (2012)10.1063/1.4721627] are presented. The SR tensors of both the H and X nuclei are discussed. Calculations were carried out within the relativistic Linear Response formalism at the Random Phase Approximation with the DIRAC program. For the halogen nucleus X, correlation effects on the non-relativistic values are shown to be of similar magnitude and opposite sign to relativistic effects. For the light H nucleus, by means of the linear response within the elimination of the small component approach it is shown that the whole relativistic effect is given by the spin-orbit operator combined with the Fermi contact operator. Comparison of "best estimate" calculated values with experimental results yield differences smaller than 2-3 in all cases. The validity of "Flygares relation" linking the SR tensor and the NMR nuclear magnetic shielding tensor in the present series of compounds is analyzed. © 2013 American Institute of Physics.