Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei
A theoretical study of the relation between the relativistic formulation of the nuclear magnetic shielding and spin-rotation tensors is presented. To this end a theoretical expression of the relativistic spin-rotation tensor is formulated, considering a molecular Hamiltonian of relativistic electron...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00219606_v136_n20_p_Aucar |
Aporte de: |
Sumario: | A theoretical study of the relation between the relativistic formulation of the nuclear magnetic shielding and spin-rotation tensors is presented. To this end a theoretical expression of the relativistic spin-rotation tensor is formulated, considering a molecular Hamiltonian of relativistic electrons and non-relativistic nuclei. Molecular rotation effects are introduced considering the terms of the Born-Oppenheimer decomposition, which couple the electrons and nuclei dynamics. The loss of the simple relation linking both spectral parameters in the non-relativistic formulation is further analyzed carrying out a perturbative expansion of relativistic effects by means of the linear response within the elimination of the small component approach. It is concluded that relativistic effects on the spin-rotation tensor are less important than those of the nuclear magnetic shielding tensor. © 2012 American Institute of Physics. |
---|