Classifying computer session data using self-organizing maps
We propose an advanced solution to track persistent computer intruders inside a UNIX-based system by clustering sessions into groups bearing similar characteristics according to expertise and type of work. Our semi-supervised method based on Self-Organizing Map (SOM) accomplishes classification of f...
Guardado en:
Autor principal: | Segura, Enrique Carlos |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97807695_v1_n_p48_Estrada http://hdl.handle.net/20.500.12110/paper_97807695_v1_n_p48_Estrada |
Aporte de: |
Ejemplares similares
-
Classifying computer session data using self-organizing maps
por: Estrada, V.C., et al. -
Robustez de las métricas de clasificación de cadencia de tecleo frente a variaciones emocionales
por: Calot, Enrique P.
Publicado: (2021) -
Robustez de las métricas de clasificación de cadencia de tecleo frente a variaciones emocionales
por: Calot, Enrique P.
Publicado: (2019) -
Intelligent systems engineering with reconfigurable computing
por: Skliarova, Iouliia
Publicado: (2006) -
Detection of ambiguous patterns in a SOM based recognition system: Application to handwritten numeral classification
por: Seijas, Leticia María, et al.
Publicado: (2007)