Topology and holonomy in discrete-time quantum walks
We present a research article which formulates the milestones for the understanding and characterization of holonomy and topology of a discrete-time quantum walk architecture, consisting of a unitary step given by a sequence of two non-commuting rotations in parameter space. Unlike other similar sys...
Autor principal: | |
---|---|
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20734352_v7_n5_p_Puentes http://hdl.handle.net/20.500.12110/paper_20734352_v7_n5_p_Puentes |
Aporte de: |
Sumario: | We present a research article which formulates the milestones for the understanding and characterization of holonomy and topology of a discrete-time quantum walk architecture, consisting of a unitary step given by a sequence of two non-commuting rotations in parameter space. Unlike other similar systems recently studied in detail in the literature, this system does not present continous 1D topological boundaries, it only presents a discrete number of Dirac points where the quasi-energy gap closes. At these discrete points, the topological winding number is not defined. Therefore, such discrete points represent topological boundaries of dimension zero, and they endow the system with a non-trivial topology. We illustrate the non-trivial character of the system by calculating the Zak phase. We discuss the prospects of this system, we propose a suitable experimental scheme to implement these ideas, and we present preliminary experimental data. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. |
---|