Conformational plasticity of the intrinsically disordered protein asr1 modulates its function as a drought stress-responsive gene

Plants in arid zones are constantly exposed to drought stress. The ASR protein family (Abscisic, Stress, Ripening) -a subgroup of the late embryogenesis abundant superfamily-is involved in the water stress response and adaptation to dry environments. Tomato ASR1, as well as other members of this fam...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2018
Materias:
DNA
pH
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v13_n8_p_Wetzler
http://hdl.handle.net/20.500.12110/paper_19326203_v13_n8_p_Wetzler
Aporte de:
Descripción
Sumario:Plants in arid zones are constantly exposed to drought stress. The ASR protein family (Abscisic, Stress, Ripening) -a subgroup of the late embryogenesis abundant superfamily-is involved in the water stress response and adaptation to dry environments. Tomato ASR1, as well as other members of this family, is an intrinsically disordered protein (IDP) that functions as a transcription factor and a chaperone. Here we employed different biophysical techniques to perform a deep in vitro characterization of ASR1 as an IDP and showed how both environmental factors and in vivo targets modulate its folding. We report that ASR1 adopts different conformations such as α-helix or polyproline type II in response to environmental changes. Low temperatures and low pH promote the polyproline type II conformation (PII). While NaCl increases PII content and slightly destabilizes α-helix conformation, PEG and glycerol have an important stabilizing effect of α-helix conformation. The binding of Zn 2 + in the low micromolar range promotes α-helix folding, while extra Zn 2+ results in homo-dimerization. The ASR1-DNA binding is sequence specific and dependent on Zn 2+ . ASR1 chaperone activity does not change upon the structure induction triggered by the addition of Zn 2+ . Furthermore, trehalose, which has no effect on the ASR1 structure by itself, showed a synergistic effect on the ASR1-driven heat shock protection towards the reporter enzyme citrate synthase (CS). These observations prompted the development of a FRET reporter to sense ASR1 folding in vivo. Its performance was confirmed in Escherichia coli under saline and osmotic stress conditions, representing a promising probe to be used in plant cells. Overall, this work supports the notion that ASR1 plasticity is a key feature that facilitates its response to drought stress and its interaction with specific targets. © 2018 Wetzler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.