A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis
We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed a...
Guardado en:
Publicado: |
2009
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16617738_v6_n2_p285_Cucker http://hdl.handle.net/20.500.12110/paper_16617738_v6_n2_p285_Cucker |
Aporte de: |
Ejemplares similares
-
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis
por: Cucker, F., et al. -
A numerical algorithm for zero counting. III: Randomization and condition
Publicado: (2012) -
A numerical algorithm for zero counting. III: Randomization and condition
por: Cucker, F., et al. -
Zero counting for a class of univariate Pfaffian functions
por: Jeronimo, Gabriela Tali, et al.
Publicado: (2016) -
Zero counting for a class of univariate Pfaffian functions
por: Barbagallo, M.L., et al.