Fractional Sobolev spaces with variable exponents and fractional p(X)-Laplacians
In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application we prove the existence and uniqueness of a solution for a nonlocal problem involving...
Guardado en:
Publicado: |
2017
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14173875_v2017_n_p1_Kaufmann http://hdl.handle.net/20.500.12110/paper_14173875_v2017_n_p1_Kaufmann |
Aporte de: |
Ejemplares similares
-
Fractional Sobolev spaces with variable exponents and fractional p(X)-Laplacians
por: Kaufmann, U., et al. -
Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians
por: Kaufmann, Uriel, et al.
Publicado: (2025) -
Traces for fractional Sobolev spaces with variable exponents
Publicado: (2017) -
Traces for fractional Sobolev spaces with variable exponents
por: Del Pezzo, L.M., et al. -
Fractional p-Laplacian evolution equations
por: Rossi, Julio Daniel
Publicado: (2016)