Asymptotic behavior for a nonlocal diffusion equation on the half line
We study the large time behavior of solutions to a nonlocal diffusion equation, ut = J ∗ u-u with J smooth, radially symmetric and compactly supported, posed in ℝ+ with zero Dirichlet boundary conditions. In the far-field scale, ξ1 ≤ xt-1/2 ≤ ξ2 with ξ1, ξ2 > 0, the asymptotic behavior is giv...
Guardado en:
Publicado: |
2015
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10780947_v35_n4_p1391_Cortazar http://hdl.handle.net/20.500.12110/paper_10780947_v35_n4_p1391_Cortazar |
Aporte de: |
Ejemplares similares
-
Asymptotic behavior for a nonlocal diffusion equation on the half line
por: Cortázar, C., et al. -
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: The critical two-dimensional case
por: Wolanski, Noemi Irene
Publicado: (2016) -
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: The critical two-dimensional case
por: Cortázar, C., et al. -
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains
por: Wolanski, Noemi Irene
Publicado: (2016) -
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains
por: Cortazar, C., et al.