Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds o...
Guardado en:
Autores principales: | Armentano, Maria Gabriela, Duran, Ricardo Guillermo |
---|---|
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10689613_v17_n_p93_Armentano http://hdl.handle.net/20.500.12110/paper_10689613_v17_n_p93_Armentano |
Aporte de: |
Ejemplares similares
-
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
por: Armentano, M.G., et al. -
A posteriori error analysis for nonconforming approximation of multiple eigenvalues
por: Duran, Ricardo Guillermo
Publicado: (2017) -
A posteriori error analysis for nonconforming approximation of multiple eigenvalues
por: Boffi, D., et al. -
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
por: Dello Russo, Anahí, et al.
Publicado: (2011) -
Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods
por: Alonso, Ana Esther, et al.
Publicado: (2009)