2-Filteredness and the point of every Galois topos
A connected locally connected topos is a Galois topos if the Galois objects generate the topos. We show that the full subcategory of Galois objects in any connected locally connected topos is an inversely 2-filtered 2-category, and as an application of the construction of 2-filtered bi-limits of top...
Guardado en:
Publicado: |
2010
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09272852_v18_n2_p115_Dubuc http://hdl.handle.net/20.500.12110/paper_09272852_v18_n2_p115_Dubuc |
Aporte de: |
Ejemplares similares
-
2-Filteredness and the point of every Galois topos
por: Dubuc, E.J. -
A Tannakian context for Galois theory
Publicado: (2013) -
A Tannakian context for Galois theory
por: Dubuc, E.J., et al. -
Every Rig with a One-Variable Fixed Point Presentation is the Burnside Rig of a Prextensive Category
por: Menni, Matías
Publicado: (2017) -
Cocycle deformations and Galois objects for semisimple Hopf algebras of dimension p3 and pq2
por: Mejía Castaño, Adriana, et al.
Publicado: (2024)