Normal numbers and nested perfect necklaces
M. B. Levin used Sobol–Faure low discrepancy sequences with Pascal triangle matrices modulo 2 to construct, a real number x such that the first N terms of the sequence (2 n xmod1) n≥1 have discrepancy O((logN) 2 ∕N). This is the lowest discrepancy known for this kind of sequences. In this note we ch...
Guardado en:
Publicado: |
2019
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0885064X_v_n_p_Becher http://hdl.handle.net/20.500.12110/paper_0885064X_v_n_p_Becher |
Aporte de: |
Ejemplares similares
-
Normal numbers and nested perfect necklaces
por: Becher, V., et al. -
M. Levin's construction of absolutely normal numbers with very low discrepancy
por: Becher, Verónica Andrea
Publicado: (2017) -
M. Levin's construction of absolutely normal numbers with very low discrepancy
por: Álvarez, N., et al. -
On the construction of absolutely normal numbers
Publicado: (2017) -
On the construction of absolutely normal numbers
por: Aistleitner, C., et al.