Between coloring and list-coloring: μ-coloring
A new variation of the coloring problem, μ-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V → ℕ such that f(v) ≠ f(w) if v is adjacent to w. Given a graph G = (V, E) and a function μ: V → ℕ, G is μ-colorable if it admits a coloring f with f(v) ≤ μ(v) for each v...
Guardado en:
Autor principal: | Bonomo, Flavia |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03817032_v99_n_p383_Bonomo http://hdl.handle.net/20.500.12110/paper_03817032_v99_n_p383_Bonomo |
Aporte de: |
Ejemplares similares
Ejemplares similares
-
Between coloring and list-coloring: μ-coloring
por: Bonomo, F., et al. -
Clique-perfectness of complements of line graphs
por: Bonomo, Flavia, et al.
Publicado: (2011) -
Exploring the complexity boundary between coloring and list-coloring
por: Bonomo, Flavia, et al.
Publicado: (2006) -
Clique-perfectness of complements of line graphs
por: Bonomo, F., et al. -
Exploring the complexity boundary between coloring and list-coloring
por: Bonomo, F., et al.