b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs

A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, Flavia
Publicado: 2014
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v8596LNCS_n_p100_Bonomo
http://hdl.handle.net/20.500.12110/paper_03029743_v8596LNCS_n_p100_Bonomo
Aporte de:
Descripción
Sumario:A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G),..., χb(G) and b-monotonic if χb (H1) ≥ χb (H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: 1. We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. 2. We prove that it is NP-complete to decide whether the b-chromatic number of a co-bipartite graph is at most a given threshold. 3. We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. 4. Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic. © 2014 Springer International Publishing.