Descripción
Sumario:1. Arginine vasopressin (AVP) is synthesized in specific brain regions including the magnocellular and parvocellular divisions of the paraventricular nucleus (PVN). Whereas magnocellular AVP responds to osmotic stimuli and functions mainly-although not exclusively - as an antidiuretic hormone, that produced in the parvocellular region controls the hypothalamus- pituitary-adrenal (HPA) axis, in conjunction with CRF. 2. In view of the reported sex differences in control of the HPA axis, we studied if these also pertain to AVP mRNA in the PVN of ovariectomized-estrogenized female rats and male rats determined by in situ hybridization. AVP mRNA was measured in intact rats, adrenalectomized (ADX) rats and ADX receiving dexamethasone (DEX) of both sexes. 3. Computerized autoradiography showed that in both sexes, AVP mRNA levels in the parvocellular division of the PVN increased after adrenalectomy and decreased following DEX. However, the reduction by DEX was more pronounced in female rats. No changes were found for the magnocellular region. Grain counting analysis of the medial-medial (MMP) and medial-lateral (MLP) subdivisions of the parvocellular region showed that the average number of grains per cell area in the MMP region of adrenally intact female rats was higher than that in males. However, in females there was no clear-cut effect of adrenalectomy on AVP mRNA levels, although the reduction after DEX treatment was again greater than that in male rats. Frequency histograms constructed by plotting the number of cells vs the number of grains per area substantiated the enhanced glucocorticoid negative control of AVP mRNA in the MMP and MLP of female rats. 4. The results indicated a sexual dimorphism in the glucocorticoid-dependent plasticity of AVP mRNA levels in the PVN. Because AVP mRNA expression differs between sexes under basal levels, after adrenalectomy, and after DEX treatment, these plastic changes may differentially condition the response to stress. Taking into consideration that stress and AVP may play a role in neurogenic hypertension, the possibility of sexual dimorphisms in AVP control may be important to assess the role of sex hormones in stress and steroid-derived hypertension.