Weighted inequalities for the fractional Laplacian and the existence of extremals
In this paper, we obtain improved versions of Stein–Weiss and Caffarelli–Kohn–Nirenberg inequalities, involving Besov norms of negative smoothness. As an application of the former, we derive the existence of extremals of the Stein–Weiss inequality in certain cases, some of which are not contained in...
Guardado en:
Publicado: |
2018
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02191997_v_n_p_DeNapoli http://hdl.handle.net/20.500.12110/paper_02191997_v_n_p_DeNapoli |
Aporte de: |
Ejemplares similares
-
Weighted inequalities for the fractional Laplacian and the existence of extremals
por: De Nápoli, P., et al. -
Elementary proofs of embedding theorems for potential spaces of radial functions
Publicado: (2016) -
Elementary proofs of embedding theorems for potential spaces of radial functions
por: de Nápoli, P.L., et al. -
Fractional Sobolev spaces with variable exponents and fractional p(X)-Laplacians
Publicado: (2017) -
Fractional Sobolev spaces with variable exponents and fractional p(X)-Laplacians
por: Kaufmann, U., et al.