Elliptic equations with critical exponent on a torus invariant region of 3
We study the multiplicity of positive solutions of a Brezis-Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the SO(3)-action is considered, namely, wh...
Guardado en:
Publicado: |
2019
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02191997_v21_n2_p_Rey http://hdl.handle.net/20.500.12110/paper_02191997_v21_n2_p_Rey |
Aporte de: |
Ejemplares similares
-
Elliptic equations with critical exponent on a torus invariant region of 3
por: Rey, C.A. -
A fourth order elliptic equation with nonlinear boundary conditions
por: Fernandez Bonder, Julian, et al.
Publicado: (2002) -
A fourth order elliptic equation with nonlinear boundary conditions
por: Fernández Bonder, J., et al. -
A singular elliptic equation with natural growth in the gradient and a variable exponent
por: Rossi, Julio Daniel
Publicado: (2015) -
A singular elliptic equation with natural growth in the gradient and a variable exponent
por: Carmona, J., et al.