The blow-up rate for a system of heat equations with non-trivial coupling at the boundary
We study the blow-up rate of positive radial solutions of a system of two heat equations, (U1)t = Δu1(u2)t = Δu2, in the ball B(0,1), with boundary conditions equation presenteded Under some natural hypothesis on the matrix P = (pij) that guarrantee the blow-up of the solution at time T, and some as...
Guardado en:
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
1997
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01704214_v20_n1_p1_Rossi http://hdl.handle.net/20.500.12110/paper_01704214_v20_n1_p1_Rossi |
Aporte de: |
Ejemplares similares
-
The blow-up rate for a system of heat equations with non-trivial coupling at the boundary
por: Rossi, J.D. -
Blow-up sets for linear diffusion equations in one dimension
Publicado: (2004) -
Blow-up sets for linear diffusion equations in one dimension
por: Quirós, F., et al. -
Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions
Publicado: (2002) -
Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions
por: Quirós, F., et al.