Relativistic atomic structure calculations of heavy targets for inelastic collisions

Fully relativistic atomic structure calculations for Zr, Nb, Pd, Gd, Er, Hf, Ta, Os, and Pt are presented here. The description of these atoms requires the solution of the Dirac equation. The electron binding energies attained are compared with experimental values, achieving excellent overall agreem...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2019
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0168583X_v_n_p_Mendez
http://hdl.handle.net/20.500.12110/paper_0168583X_v_n_p_Mendez
Aporte de:
Descripción
Sumario:Fully relativistic atomic structure calculations for Zr, Nb, Pd, Gd, Er, Hf, Ta, Os, and Pt are presented here. The description of these atoms requires the solution of the Dirac equation. The electron binding energies attained are compared with experimental values, achieving excellent overall agreement for the inner shells. Discrepancies in the outer shell binding energies between the isolated atom and the solid are discussed, giving special attention to the open 4f–subshell. Based on the present calculations, we analyzed the valence shell of the nine elements studied here and propose theoretical values for the Wigner-Seitz radio. © 2019 Elsevier B.V.