Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure

The aim of this study was to analyze the biochemical alterations in the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Mussels were fed during 4 weeks with the green algae Scenedesmus vacuolatus previously exposed to a commercial formulation of glyphosate (6 mg L−1 active princ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2018
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01476513_v163_n_p69_Iummato
http://hdl.handle.net/20.500.12110/paper_01476513_v163_n_p69_Iummato
Aporte de:
Descripción
Sumario:The aim of this study was to analyze the biochemical alterations in the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Mussels were fed during 4 weeks with the green algae Scenedesmus vacuolatus previously exposed to a commercial formulation of glyphosate (6 mg L−1 active principle) with the addition of alkyl aryl polyglycol ether surfactant. After 1, 7, 14, 21 and 28 days of dietary exposure, glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), carboxylesterases (CES) and alkaline phosphatase (ALP) activities, glutathione (GSH) content and damage to lipids and proteins levels were analyzed. A significant increase (72%) in the GST activity and a significant decrease (26%) in the CES activity in the mussels fed on glyphosate exposed algae for 28 days were observed. The ALP activity was significantly increased at 21 and 28 days of dietary exposure (48% and 72%, respectively). GSH content and CAT, SOD and AchE activities did not show any differences between the exposed and non exposed bivalves. No oxidative damage to lipids and proteins, measured as TBARS and carbonyl content respectively, was observed in response to glyphosate dietary exposure. The decrease in the CES activity and the increases in GST and ALP activities observed in L. fortunei indicate that dietary exposure to glyphosate provokes metabolic alterations, related with detoxification mechanisms. © 2018 Elsevier Inc.