Spin relaxation near the metal-insulator transition: Dominance of the Dresselhaus spin-orbit coupling
We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are sh...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v108_n1_p_Intronati http://hdl.handle.net/20.500.12110/paper_00319007_v108_n1_p_Intronati |
Aporte de: |
Sumario: | We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches: an analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation time. © 2012 American Physical Society. |
---|