Equivalence and s-equivalence of vector-tensor Lagrangians

It will be proven that if a gauge-invariant Lagrangian density having the local form L = L(gij;Ai;Aij) is such that its Euler-Lagrange equations Ei(L) = 0 have the same set of solutions as Ei(L0) = 0, where L0 = g1/2F ijFij, then L and cL0 are equivalent for same constant c, i.e., Ei(L) = Ei(cL0). F...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Noriega, Ricardo José, Schifini, Claudio Gabriel
Publicado: 1991
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222488_v32_n8_p2063_Lopez
http://hdl.handle.net/20.500.12110/paper_00222488_v32_n8_p2063_Lopez
Aporte de:
id paper:paper_00222488_v32_n8_p2063_Lopez
record_format dspace
spelling paper:paper_00222488_v32_n8_p2063_Lopez2023-06-08T14:48:08Z Equivalence and s-equivalence of vector-tensor Lagrangians Noriega, Ricardo José Schifini, Claudio Gabriel It will be proven that if a gauge-invariant Lagrangian density having the local form L = L(gij;Ai;Aij) is such that its Euler-Lagrange equations Ei(L) = 0 have the same set of solutions as Ei(L0) = 0, where L0 = g1/2F ijFij, then L and cL0 are equivalent for same constant c, i.e., Ei(L) = Ei(cL0). From a previous result it follows that L = cL0 + D + eg1/2, where D is a divergence and e is a constant. © 1991 American Institute of Physics. Fil:Noriega, R.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Schifini, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1991 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222488_v32_n8_p2063_Lopez http://hdl.handle.net/20.500.12110/paper_00222488_v32_n8_p2063_Lopez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description It will be proven that if a gauge-invariant Lagrangian density having the local form L = L(gij;Ai;Aij) is such that its Euler-Lagrange equations Ei(L) = 0 have the same set of solutions as Ei(L0) = 0, where L0 = g1/2F ijFij, then L and cL0 are equivalent for same constant c, i.e., Ei(L) = Ei(cL0). From a previous result it follows that L = cL0 + D + eg1/2, where D is a divergence and e is a constant. © 1991 American Institute of Physics.
author Noriega, Ricardo José
Schifini, Claudio Gabriel
spellingShingle Noriega, Ricardo José
Schifini, Claudio Gabriel
Equivalence and s-equivalence of vector-tensor Lagrangians
author_facet Noriega, Ricardo José
Schifini, Claudio Gabriel
author_sort Noriega, Ricardo José
title Equivalence and s-equivalence of vector-tensor Lagrangians
title_short Equivalence and s-equivalence of vector-tensor Lagrangians
title_full Equivalence and s-equivalence of vector-tensor Lagrangians
title_fullStr Equivalence and s-equivalence of vector-tensor Lagrangians
title_full_unstemmed Equivalence and s-equivalence of vector-tensor Lagrangians
title_sort equivalence and s-equivalence of vector-tensor lagrangians
publishDate 1991
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222488_v32_n8_p2063_Lopez
http://hdl.handle.net/20.500.12110/paper_00222488_v32_n8_p2063_Lopez
work_keys_str_mv AT noriegaricardojose equivalenceandsequivalenceofvectortensorlagrangians
AT schifiniclaudiogabriel equivalenceandsequivalenceofvectortensorlagrangians
_version_ 1768544854181150720