Iterative actions of normal operators
Let A be a normal operator in a Hilbert space H, and let G⊂H be a countable set of vectors. We investigate the relations between A, G and L that make the system of iterations {Ang:g∈G,0≤n<L(g)} complete, Bessel, a basis, or a frame for H. The problem is motivated by the dynamical sampling pro...
Guardado en:
Autores principales: | Cabrelli, Carlos Alberto, Molter, Ursula Maria |
---|---|
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v272_n3_p1121_Aldroubi http://hdl.handle.net/20.500.12110/paper_00221236_v272_n3_p1121_Aldroubi |
Aporte de: |
Ejemplares similares
-
Iterative actions of normal operators
por: Aldroubi, A., et al. -
Dynamical sampling
por: Cabrelli, Carlos Alberto, et al.
Publicado: (2017) -
Optimal non-linear models for sparsity and sampling
por: Aldroubi, A., et al. -
Dynamical sampling
por: Aldroubi, A., et al. -
Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(ℝd)
por: Aldroubi, A., et al.