A geometric characterization of nuclearity and injectivity
Let R(A, N) be the space of bounded non-degenerate representations π: A → N, where A is a nuclear C*-algebra and N an injective von Neumann algebra with separable predual. We prove that R(A, N) is an homogeneous reductive space under the action of the group GN, of invertible elements of N, and also...
Guardado en:
Publicado: |
1995
|
---|---|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v133_n2_p474_Andruchow http://hdl.handle.net/20.500.12110/paper_00221236_v133_n2_p474_Andruchow |
Aporte de: |
Ejemplares similares
-
A geometric characterization of nuclearity and injectivity
por: Andruchow, E., et al. -
Morphometric and geometric characterization of normal faults on Mars
Publicado: (2014) -
On geometric characterizations for Monge-Ampère doubling measures
Publicado: (2002) -
On geometric characterizations for Monge-Ampère doubling measures
por: Forzani, L., et al.
Publicado: (2002) -
On geometric characterizations for Monge-Ampère doubling measures
por: Forzani, L., et al.