Quantum mechanics: Modal interpretation and Galilean transformations

The aim of this paper is to consider in what sense the modal-Hamiltonian interpretation of quantum mechanics satisfies the physical constraints imposed by the Galilean group. In particular, we show that the only apparent conflict, which follows from boost-transformations, can be overcome when the de...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00159018_v39_n9_p1023_Ardenghi
http://hdl.handle.net/20.500.12110/paper_00159018_v39_n9_p1023_Ardenghi
Aporte de:
Descripción
Sumario:The aim of this paper is to consider in what sense the modal-Hamiltonian interpretation of quantum mechanics satisfies the physical constraints imposed by the Galilean group. In particular, we show that the only apparent conflict, which follows from boost-transformations, can be overcome when the definition of quantum systems and subsystems is taken into account. On this basis, we apply the interpretation to different well-known models, in order to obtain concrete examples of the previous conceptual conclusions. Finally, we consider the role played by the Casimir operators of the Galilean group in the interpretation. © Springer Science+Business Media, LLC 2009.