CP-chains and dimension preservation for projections of (×m,×n)-invariant Gibbs measures
Dimension conservation for almost every projection has been well-established by the work of Marstrand, Mattila and Hunt and Kaloshin. More recently, Hochman and Shmerkin used CP-chains, a tool first introduced by Furstenberg, to prove all projections preserve dimension of measures on [0,1]2 that are...
Guardado en:
Publicado: |
2017
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v304_n_p227_Almarza http://hdl.handle.net/20.500.12110/paper_00018708_v304_n_p227_Almarza |
Aporte de: |
Ejemplares similares
-
CP-chains and dimension preservation for projections of (×m,×n)-invariant Gibbs measures
por: Almarza, J.I. -
Finite Cycle Gibbs Measures on Permutations of Zd
Publicado: (2015) -
Finite Cycle Gibbs Measures on Permutations of Zd
por: Armendáriz, I., et al. -
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
Publicado: (2014) -
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
por: Fernández, R., et al.