On vector-tensor minimally coupled field theories

We consider vector-tensor minimally coupled Lagrangians, i.e., scalar densities of the form ℒ = g1/2R +L(gij;Ψi;Ψi,j). We prove that the gauge invariance of any of the sets of Euler-Lagrange expressions implies the gauge invariance of the Lagrangian itself for n even, and an "almost" gauge...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Noriega, Ricardo José, Schifini, Claudio Gabriel
Publicado: 1986
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v18_n7_p685_Noriega
http://hdl.handle.net/20.500.12110/paper_00017701_v18_n7_p685_Noriega
Aporte de:
id paper:paper_00017701_v18_n7_p685_Noriega
record_format dspace
spelling paper:paper_00017701_v18_n7_p685_Noriega2023-06-08T14:21:29Z On vector-tensor minimally coupled field theories Noriega, Ricardo José Schifini, Claudio Gabriel We consider vector-tensor minimally coupled Lagrangians, i.e., scalar densities of the form ℒ = g1/2R +L(gij;Ψi;Ψi,j). We prove that the gauge invariance of any of the sets of Euler-Lagrange expressions implies the gauge invariance of the Lagrangian itself for n even, and an "almost" gauge invariance for n odd. We also find those ℒ for which Ei(ℒ) = 0 or Eij(L) = 0, generalizing well-known results by Lovelock and a result by the authors. © 1986 Plenum Publishing Corporation. Fil:Noriega, R.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Schifini, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1986 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v18_n7_p685_Noriega http://hdl.handle.net/20.500.12110/paper_00017701_v18_n7_p685_Noriega
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We consider vector-tensor minimally coupled Lagrangians, i.e., scalar densities of the form ℒ = g1/2R +L(gij;Ψi;Ψi,j). We prove that the gauge invariance of any of the sets of Euler-Lagrange expressions implies the gauge invariance of the Lagrangian itself for n even, and an "almost" gauge invariance for n odd. We also find those ℒ for which Ei(ℒ) = 0 or Eij(L) = 0, generalizing well-known results by Lovelock and a result by the authors. © 1986 Plenum Publishing Corporation.
author Noriega, Ricardo José
Schifini, Claudio Gabriel
spellingShingle Noriega, Ricardo José
Schifini, Claudio Gabriel
On vector-tensor minimally coupled field theories
author_facet Noriega, Ricardo José
Schifini, Claudio Gabriel
author_sort Noriega, Ricardo José
title On vector-tensor minimally coupled field theories
title_short On vector-tensor minimally coupled field theories
title_full On vector-tensor minimally coupled field theories
title_fullStr On vector-tensor minimally coupled field theories
title_full_unstemmed On vector-tensor minimally coupled field theories
title_sort on vector-tensor minimally coupled field theories
publishDate 1986
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v18_n7_p685_Noriega
http://hdl.handle.net/20.500.12110/paper_00017701_v18_n7_p685_Noriega
work_keys_str_mv AT noriegaricardojose onvectortensorminimallycoupledfieldtheories
AT schifiniclaudiogabriel onvectortensorminimallycoupledfieldtheories
_version_ 1768542386617581568