On vector-tensor minimally coupled field theories
We consider vector-tensor minimally coupled Lagrangians, i.e., scalar densities of the form ℒ = g1/2R +L(gij;Ψi;Ψi,j). We prove that the gauge invariance of any of the sets of Euler-Lagrange expressions implies the gauge invariance of the Lagrangian itself for n even, and an "almost" gauge...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
1986
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v18_n7_p685_Noriega http://hdl.handle.net/20.500.12110/paper_00017701_v18_n7_p685_Noriega |
Aporte de: |
id |
paper:paper_00017701_v18_n7_p685_Noriega |
---|---|
record_format |
dspace |
spelling |
paper:paper_00017701_v18_n7_p685_Noriega2023-06-08T14:21:29Z On vector-tensor minimally coupled field theories Noriega, Ricardo José Schifini, Claudio Gabriel We consider vector-tensor minimally coupled Lagrangians, i.e., scalar densities of the form ℒ = g1/2R +L(gij;Ψi;Ψi,j). We prove that the gauge invariance of any of the sets of Euler-Lagrange expressions implies the gauge invariance of the Lagrangian itself for n even, and an "almost" gauge invariance for n odd. We also find those ℒ for which Ei(ℒ) = 0 or Eij(L) = 0, generalizing well-known results by Lovelock and a result by the authors. © 1986 Plenum Publishing Corporation. Fil:Noriega, R.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Schifini, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1986 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v18_n7_p685_Noriega http://hdl.handle.net/20.500.12110/paper_00017701_v18_n7_p685_Noriega |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We consider vector-tensor minimally coupled Lagrangians, i.e., scalar densities of the form ℒ = g1/2R +L(gij;Ψi;Ψi,j). We prove that the gauge invariance of any of the sets of Euler-Lagrange expressions implies the gauge invariance of the Lagrangian itself for n even, and an "almost" gauge invariance for n odd. We also find those ℒ for which Ei(ℒ) = 0 or Eij(L) = 0, generalizing well-known results by Lovelock and a result by the authors. © 1986 Plenum Publishing Corporation. |
author |
Noriega, Ricardo José Schifini, Claudio Gabriel |
spellingShingle |
Noriega, Ricardo José Schifini, Claudio Gabriel On vector-tensor minimally coupled field theories |
author_facet |
Noriega, Ricardo José Schifini, Claudio Gabriel |
author_sort |
Noriega, Ricardo José |
title |
On vector-tensor minimally coupled field theories |
title_short |
On vector-tensor minimally coupled field theories |
title_full |
On vector-tensor minimally coupled field theories |
title_fullStr |
On vector-tensor minimally coupled field theories |
title_full_unstemmed |
On vector-tensor minimally coupled field theories |
title_sort |
on vector-tensor minimally coupled field theories |
publishDate |
1986 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v18_n7_p685_Noriega http://hdl.handle.net/20.500.12110/paper_00017701_v18_n7_p685_Noriega |
work_keys_str_mv |
AT noriegaricardojose onvectortensorminimallycoupledfieldtheories AT schifiniclaudiogabriel onvectortensorminimallycoupledfieldtheories |
_version_ |
1768542386617581568 |