Formation control for multi-domain autonomous vehicles based on dual quaternions

"Unmanned networked multirobot systems have the potential to accomplish complex field tasks with minimum human intervention. Motion coordination of vehicles that operate in different domains (land, sea, air) is one of the problems that need to be addressed to achieve such a goal. This article p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mas, Ignacio, Moreno, Patricio, Giribet, Juan I., Valentino Barzi, Diego
Formato: Ponencias en Congresos acceptedVersion
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/1728
Aporte de:
Descripción
Sumario:"Unmanned networked multirobot systems have the potential to accomplish complex field tasks with minimum human intervention. Motion coordination of vehicles that operate in different domains (land, sea, air) is one of the problems that need to be addressed to achieve such a goal. This article presents a representation method based on dual quaternions for leaderfollower formation control architectures. This representation offers the most compact and computationally efficient screw transformation formalism and can be used to describe rigid body motions because they simultaneously describe positions and orientations with only eight parameters. A controller in dual quaternion formation space is proposed and analyzed. Computer simulation results and experimental tests applied to the task of escorting an UGV with UAVs are shown to verify the functionality of the proposed system."