An implicitization challenge for binary factor analysis

We use tropical geometry to compute the multidegree and Newton polytope of the hypersurface of a statistical model with two hidden and four observed binary random variables, solving an open question stated by Drton, Sturmfels and Sullivant in (Drton et al., 2009, Ch. VI, Problem 7.7). The model is o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cueto, M.A., Tobis, E.A., Yu, J.
Formato: Artículo publishedVersion
Publicado: 2010
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07477171_v45_n12_p1296_Cueto
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v45_n12_p1296_Cueto_oai
Aporte de:
Descripción
Sumario:We use tropical geometry to compute the multidegree and Newton polytope of the hypersurface of a statistical model with two hidden and four observed binary random variables, solving an open question stated by Drton, Sturmfels and Sullivant in (Drton et al., 2009, Ch. VI, Problem 7.7). The model is obtained from the undirected graphical model of the complete bipartite graph K2,4 by marginalizing two of the six binary random variables. We present algorithms for computing the Newton polytope of its defining equation by parallel walks along the polytope and its normal fan. In this way we compute vertices of the polytope. Finally, we also compute and certify its facets by studying tangent cones of the polytope at the symmetry classes of vertices. The Newton polytope has 17. 214. 912 vertices in 44. 938 symmetry classes and 70. 646 facets in 246 symmetry classes. © 2010.