Hypercyclic convolution operators on Fréchet spaces of analytic functions
A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space ho...
Guardado en:
Autores principales: | Carando, D., Dimant, V., Muro, S. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v336_n2_p1324_Carando https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v336_n2_p1324_Carando_oai |
Aporte de: |
Ejemplares similares
-
Hypercyclic convolution operators on Fréchet spaces of analytic functions
por: Carando, D., et al.
Publicado: (2007) -
Hypercyclic convolution operators on Fréchet spaces of analytic functions
por: Carando, D., et al. -
Hypercyclic convolution operators on Fréchet spaces of analytic functions
por: Carando, Daniel German, et al.
Publicado: (2007) -
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions
por: Muro, S., et al. -
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions
por: Muro, Santiago, et al.
Publicado: (2014)