Optimal boundary holes for the Sobolev trace constant
In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where informati...
Guardado en:
Autores principales: | Del Pezzo, L., Fernández Bonder, J., Neves, W. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzo https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00220396_v251_n8_p2327_DelPezzo_oai |
Aporte de: |
Ejemplares similares
-
Optimal boundary holes for the Sobolev trace constant
por: Del Pezzo, L., et al.
Publicado: (2011) -
Optimal boundary holes for the Sobolev trace constant
por: Del Pezzo, L., et al. -
Optimal boundary holes for the Sobolev trace constant
por: Del Pezzo, Leandro M., et al.
Publicado: (2011) -
An optimization problem for nonlinear Steklov eigenvalues with a boundary potential
por: Fernandez Bonder, Julian
Publicado: (2014) -
Optimization problem for extremals of the trace inequality in domains with holes
por: Del Pezzo, Leandro M.
Publicado: (2010)