Chaotic diffusion in the Gliese-876 planetary system

Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martí, Javier Guillermo, Cincotta, Pablo Miguel, Beaugé, Cristian
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/93566
https://academic.oup.com/mnras/article-abstract/460/1/1094/2608834?redirectedFrom=fulltext
https://ri.conicet.gov.ar/handle/11336/37343
Aporte de:
id I19-R120-10915-93566
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Astronomía
chaos
diffusion
methods: numerical
celestial mechanics
planets and satellites: dynamical evolution and stability
planets and satellites: formation
spellingShingle Astronomía
chaos
diffusion
methods: numerical
celestial mechanics
planets and satellites: dynamical evolution and stability
planets and satellites: formation
Martí, Javier Guillermo
Cincotta, Pablo Miguel
Beaugé, Cristian
Chaotic diffusion in the Gliese-876 planetary system
topic_facet Astronomía
chaos
diffusion
methods: numerical
celestial mechanics
planets and satellites: dynamical evolution and stability
planets and satellites: formation
description Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
format Articulo
Articulo
author Martí, Javier Guillermo
Cincotta, Pablo Miguel
Beaugé, Cristian
author_facet Martí, Javier Guillermo
Cincotta, Pablo Miguel
Beaugé, Cristian
author_sort Martí, Javier Guillermo
title Chaotic diffusion in the Gliese-876 planetary system
title_short Chaotic diffusion in the Gliese-876 planetary system
title_full Chaotic diffusion in the Gliese-876 planetary system
title_fullStr Chaotic diffusion in the Gliese-876 planetary system
title_full_unstemmed Chaotic diffusion in the Gliese-876 planetary system
title_sort chaotic diffusion in the gliese-876 planetary system
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/93566
https://academic.oup.com/mnras/article-abstract/460/1/1094/2608834?redirectedFrom=fulltext
https://ri.conicet.gov.ar/handle/11336/37343
work_keys_str_mv AT martijavierguillermo chaoticdiffusioninthegliese876planetarysystem
AT cincottapablomiguel chaoticdiffusioninthegliese876planetarysystem
AT beaugecristian chaoticdiffusioninthegliese876planetarysystem
bdutipo_str Repositorios
_version_ 1764820491357388802