Fast facial landmark detection and applications: a survey
Dense facial landmark detection is one of the key elements of face processing pipeline. It is used in virtual face reenactment, emotion recognition, driver status tracking, etc. Early approaches were suitable for facial landmark detection in controlled environments only, which is clearly insufficien...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/136225 |
Aporte de: |
id |
I19-R120-10915-136225 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas Computer vision Edge computing Facial landmarks Neural networks Mobile applications Literature overview Visión por computadora Computación en la frontera Puntos faciales de referencia Redes neuronales artificiales Aplicaciones Móviles Estudio de la bibliografía |
spellingShingle |
Ciencias Informáticas Computer vision Edge computing Facial landmarks Neural networks Mobile applications Literature overview Visión por computadora Computación en la frontera Puntos faciales de referencia Redes neuronales artificiales Aplicaciones Móviles Estudio de la bibliografía Khabarlak, Kostiantyn Koriashkina, Larysa Fast facial landmark detection and applications: a survey |
topic_facet |
Ciencias Informáticas Computer vision Edge computing Facial landmarks Neural networks Mobile applications Literature overview Visión por computadora Computación en la frontera Puntos faciales de referencia Redes neuronales artificiales Aplicaciones Móviles Estudio de la bibliografía |
description |
Dense facial landmark detection is one of the key elements of face processing pipeline. It is used in virtual face reenactment, emotion recognition, driver status tracking, etc. Early approaches were suitable for facial landmark detection in controlled environments only, which is clearly insufficient. Neural networks have shown an astonishing qualitative improvement for in-the-wild face landmark detection problem, and are now being studied by many researchers in the field. Numerous bright ideas are proposed, often complimentary to each other. However, exploration of the whole volume of novel approaches is quite challenging. Therefore, we present this survey, where we summarize state-of-the-art algorithms into categories, provide a comparison of recently introduced in-the-wild datasets (e.g., 300W, AFLW, COFW, WFLW) that contain images with large pose, face occlusion, taken in unconstrained conditions. In addition to quality, applications require fast inference, and preferably on mobile devices. Hence, we include information about algorithm inference speed both on desktop and mobile hardware, which is rarely studied. Importantly, we highlight problems of algorithms, their applications, vulnerabilities, and briefly touch on established methods. We hope that the reader will find many novel ideas, will see how the algorithms are used in applications, which will enable further research. |
format |
Articulo Articulo |
author |
Khabarlak, Kostiantyn Koriashkina, Larysa |
author_facet |
Khabarlak, Kostiantyn Koriashkina, Larysa |
author_sort |
Khabarlak, Kostiantyn |
title |
Fast facial landmark detection and applications: a survey |
title_short |
Fast facial landmark detection and applications: a survey |
title_full |
Fast facial landmark detection and applications: a survey |
title_fullStr |
Fast facial landmark detection and applications: a survey |
title_full_unstemmed |
Fast facial landmark detection and applications: a survey |
title_sort |
fast facial landmark detection and applications: a survey |
publishDate |
2022 |
url |
http://sedici.unlp.edu.ar/handle/10915/136225 |
work_keys_str_mv |
AT khabarlakkostiantyn fastfaciallandmarkdetectionandapplicationsasurvey AT koriashkinalarysa fastfaciallandmarkdetectionandapplicationsasurvey AT khabarlakkostiantyn deteccionrapidadepuntosdereferenciafacialesyaplicacionesestudiodelabibliografia AT koriashkinalarysa deteccionrapidadepuntosdereferenciafacialesyaplicacionesestudiodelabibliografia |
bdutipo_str |
Repositorios |
_version_ |
1764820456846655489 |