Exponentially fitted discontinuous Galerkin schemes for singularly perturbed problems

New discontinuous Galerkin schemes in mixed form are introduced for symmetric elliptic problems of second order. They exhibit reduced connectivity with respect to the standard ones. The modifications in the choice of the approximation spaces and in the stabilization term do not spoil the error estim...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lombardi, A.L
Otros Autores: Pietra, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10947caa a22009497a 4500
001 PAPER-9207
003 AR-BaUEN
005 20230518203906.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84866733890 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NMPDE 
100 1 |a Lombardi, A.L. 
245 1 0 |a Exponentially fitted discontinuous Galerkin schemes for singularly perturbed problems 
260 |c 2012 
270 1 0 |m Lombardi, A.L.; Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, Los Polvorines, B1613GSX Provincia de Buenos Aires, Argentina; email: aldoc7@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Cockburn, B., Discontinuous Galerkin methods for convection-dominated problems (1999) High-Order Methods for Computational Physics, 9, pp. 69-224. , T. J. Barth and H. Deconinck, editors, Lecture Notes in Computer Science Engineering, Springer, New York 
504 |a Cockburn, B., Dawson, C., Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions (2000) The Mathematics of Finite Elements and Applications, X, MAFELAP 1999 (Uxbridge), pp. 225-238. , Elsevier, Oxford 
504 |a Becker, R., Hansbo, P., Discontinuous Galerkin methods for convection-diffusion problems with arbitrary Péclet number (2000) Numerical Mathematics and Advanced Applications, Technologisch Instituut, pp. 100-109. , P. Neittaanmaki, T. Tiihonen, and P. Tarvainen, editors, World Scientific, Proceedings of the ENUMATH 99, River Edge, NJ 
504 |a Houston, P., Schwab, C., Süli, E., Discontinuous hp-finite element methods for advection-diffusion-reaction problems (2002) SIAM J Numer Anal, 39, pp. 2133-2163 
504 |a Gopalakrishnan, J., Kanschat, G., A multilevel discontinuous Galerkin method (2003) Numerische Mathematik, 95 (3), pp. 527-550. , DOI 10.1007/s002110200392 
504 |a Zarin, H., Roos, H., Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers (2005) Numerische Mathematik, 100 (4), pp. 735-759. , DOI 10.1007/s00211-005-0598-1 
504 |a Brezzi, F., Cockburn, B., Marini, L.D., Süli, E., Stabilization mechanism in discontinuous Galerkin finite element methods (2006) Comput Meth Appl Mech Eng, 195, pp. 3293-3310 
504 |a Hughes, T.J.R., Scovazzi, G., Bochev, P.B., Buffa, A., A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method (2006) Comp Meth Appl Mech Eng, 195, pp. 2761-2787 
504 |a Buffa, A., Hughes, T.J.R., Sangalli, G., Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems (2006) SIAM Journal on Numerical Analysis, 44 (4), pp. 1420-1440. , DOI 10.1137/050640382 
504 |a Georgoulis, E.H., Hall, E., Houston, P., Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes (2007) SIAM J Sci Comp, 30, pp. 246-271 
504 |a Ern, A., Stephansen, A.F., A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods (2008) J Comput Math, 26, pp. 488-510 
504 |a Antonietti, P., Houston, P., A pre-processing moving mesh method for discontinuous Galerkin approximations of advection-diffusion-reaction problems (2008) Int J Numer Model, 5, pp. 704-728 
504 |a Di Pietro, D.A., Ern, A., Guermond, J.L., Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection (2008) SIAM J Numer Anal, 46, pp. 805-831 
504 |a Ayuso, B., Marini, L.D., Discontinuous Galerkin methods for advection-diffusion-reaction problems (2009) SIAM J Numer Anal, 47, pp. 1391-1420 
504 |a Brezzi, F., Marini, L.D., Pietra, P., Methodes d'elements mixtes et schema de Scharfetter-Gummel (1987) C R Acad Sci Paris, 305, pp. 599-604 
504 |a Brezzi, F., Marini, L.D., Pietra, P., Two-dimensional exponential fitting and applications to semiconductor device equations (1989) SIAM J Numer Anal, 26, pp. 1342-1355 
504 |a Brezzi, F., Marini, L.D., Pietra, P., Numerical simulation of semiconductor devices (1989) Computer Methods in Applied Mechanics and Engineering, 75 (1-3), pp. 493-514 
504 |a Brezzi, F., Marini, L.D., Micheletti, S., Pietra, P., Sacco, R., Wang, S., Finite element and finite volume discretizations of drift-diffusion type models for semiconductors (2005) Handbook of Numerical Analysis, Vol. 13: Special Volume: Numerical Methods in Electromagnetics, pp. 317-441. , W. H. A. Schilders, E. J. W. ter Maten, Guest editors, P. G. Ciarlet, editor, Elsevier, Amsterdam 
504 |a Holst, S., Jüngel, A., Pietra, P., A mixed finite element discretization of the energy-transport models for semiconductors (2003) SIAM J Sci Comp, 24, pp. 2058-2075 
504 |a Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems (2002) SIAM J Numer Anal, 39, pp. 1749-1779 
504 |a Ciarlet, P.G., The finite element method for elliptic problems (1978) Studies in Mathematics and Its Applications, 4. , J. L. Lions, G. Papanicolaou, and R. T. Rockafellor, editors, North-Holland Publishing Co. Amsterdam-New York-Oxford 
504 |a Arnold, D.N., An interior penalty finite element method with discontinuous elements (1982) SIAM J Numer Anal, 19, pp. 742-760 
504 |a Douglas Jr., J., Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods (1976) Lecture Notes in Physics 58, , R. Glowinski and J. L. Lions, editors. Springer-Verlag, Berlin 
504 |a Wheeler, M.F., An elliptic collocation finite element method with interior penalties (1978) SIAM J Numer Anal, 15, pp. 152-161 
504 |a Cockburn, B., Shu, C.W., The local discontinuous Galerkin method for time dependent convection diffusion systems (1998) SIAM J Numer Anal, 35, pp. 2240-2463 
504 |a Rivière, B., Wheeler, M.F., Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems (2001) SIAM J Numer Anal, 39, pp. 902-931 
504 |a Brenner, S.C., Owens, L., A weakly over penalized non-symmetric interior penalty method (2007) J Numer Anal Ind Appl Math, 2, pp. 35-48 
504 |a Brenner, S.C., Owens, L., A W-cycle algorithm for a weakly over-penalized interior penalty method (2007) Computer Methods in Applied Mechanics and Engineering, 196, pp. 3823-3832. , DOI 10.1016/j.cma.2007.02.011, PII S0045782507001090 
504 |a Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M., A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows (1997) Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, pp. 99-108. , R. Decuypere and G. Dibelius, editors, Technologisch Insitut, Antwerpen, Belgium 
504 |a Brezzi, F., Manzini, M., Marini, L.D., Pietra, P., Russo, A., Discontinuous Galerkin approximation for elliptic problems (2000) Numer Meth Partial Diff Eq, 16, pp. 365-378 
504 |a Ayuso De Dios, B., Zikatanov, L., Uniformly convergent iterative methods for discontinuous Galerkin discretizations (2009) J Sci Comput, 40, pp. 4-36 
504 |a Ayuso De Dios, B., Brezzi, F., Havle, O., Marini, L.D., L 2 -estimates for the DG IIPG-0 scheme (2011) Numer Meth Partial Diff Eq, , June 15, [Epub ahead of print (DOI:10.1002/num.20687)] 
504 |a Castillo, P., Cockburn, B., Perugia, I., Schotzau, D., An a priori error analysis of the local discontinuous Galerkin method for elliptic problems (2000) SIAM Journal on Numerical Analysis, 38 (5), pp. 1676-1706. , PII S0036142900371003 
504 |a Castillo, P., Cockburn, B., Perugia, I., Schotzau, D., Local discontinuous Galerkin methods for elliptic problems (2002) Communications in Numerical Methods in Engineering, 18 (1), pp. 69-75. , DOI 10.1002/cnm.471 
504 |a Castillo, P.E., (2001) Local Discontinuous Galerkin Methods for Convection-diffusion and Elliptic Problems, , PhD Thesis, University of Minnesota, Minneapolis 
504 |a Brezzi, F., Manzini, M., Marini, L.D., Pietra, P., Russo, A., Discontinuous finite elements for diffusion problems (1999) Atti Convegno in Onore di F. Brioschi (Milan, 1997), Istituto Lombardo, pp. 197-217. , Accademia di Scienze e Lettere, Milan, Italy 
520 3 |a New discontinuous Galerkin schemes in mixed form are introduced for symmetric elliptic problems of second order. They exhibit reduced connectivity with respect to the standard ones. The modifications in the choice of the approximation spaces and in the stabilization term do not spoil the error estimates. These methods are then used for designing new exponentially fitted schemes for advection dominated equations. The presented numerical tests show the good performances of the proposed schemes. © 2011 Wiley Periodicals, Inc.  |l eng 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, Los Polvorines, B1613GSX Provincia de Buenos Aires, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Istituto di Matematica Applicata e Tecnologie Informatiche, CNR, Via Ferrata 1, I-27100 Pavia, Italy 
690 1 0 |a ADVECTION-DIFFUSION EQUATIONS 
690 1 0 |a DISCONTINUOUS GALERKIN METHODS 
690 1 0 |a EXPONENTIALLY FITTED SCHEMES 
690 1 0 |a ADVECTION DIFFUSION EQUATION 
690 1 0 |a APPROXIMATION SPACES 
690 1 0 |a DISCONTINUOUS GALERKIN 
690 1 0 |a DISCONTINUOUS GALERKIN METHODS 
690 1 0 |a ELLIPTIC PROBLEM 
690 1 0 |a ERROR ESTIMATES 
690 1 0 |a EXPONENTIALLY FITTED SCHEMES 
690 1 0 |a NUMERICAL TESTS 
690 1 0 |a SECOND ORDERS 
690 1 0 |a SINGULARLY PERTURBED PROBLEM 
690 1 0 |a ADVECTION 
690 1 0 |a PERTURBATION TECHNIQUES 
690 1 0 |a GALERKIN METHODS 
700 1 |a Pietra, P. 
773 0 |d 2012  |g v. 28  |h pp. 1747-1777  |k n. 6  |p Numer Methods Partial Differential Equations  |x 0749159X  |t Numerical Methods for Partial Differential Equations 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866733890&doi=10.1002%2fnum.20701&partnerID=40&md5=941b884c2f83c293bf3aacd8e128640c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/num.20701  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0749159X_v28_n6_p1747_Lombardi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0749159X_v28_n6_p1747_Lombardi  |y Registro en la Biblioteca Digital 
961 |a paper_0749159X_v28_n6_p1747_Lombardi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70160