Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation

Light makes carbon fixation possible, allowing plant and animal life on Earth. We have previously shown that light regulates alternative splicing in plants. Light initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing of a subset of Arabidopsis thaliana transcripts....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Godoy Herz, M.A
Otros Autores: Kubaczka, M.G, Brzyżek, G., Servi, L., Krzyszton, M., Simpson, C., Brown, J., Swiezewski, S., Petrillo, E., Kornblihtt, A.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Cell Press 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13820caa a22012377a 4500
001 PAPER-25631
003 AR-BaUEN
005 20230518205743.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85062215196 
024 7 |2 cas  |a histone, 9062-68-4 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MOCEF 
100 1 |a Godoy Herz, M.A. 
245 1 0 |a Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation 
260 |b Cell Press  |c 2019 
270 1 0 |m Kornblihtt, A.R.; Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), (C1428EHA)Argentina; email: ark@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alló, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., de la Mata, M., Agirre, E., Elela, S.A., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat. Struct. Mol. Biol., 16, pp. 717-724 
504 |a Antosz, W., Pfab, A., Ehrnsberger, H.F., Holzinger, P., Köllen, K., Mortensen, S.A., Bruckmann, A., Griesenbeck, J., The composition of the Arabidopsis RNA polymerase II transcript elongation complex reveals the interplay between elongation and mRNA processing factors (2017) Plant Cell, 29, pp. 854-870 
504 |a Beyer, A.L., Osheim, Y.N., Splice site selection, rate of splicing, and alternative splicing on nascent transcripts (1988) Genes Dev., 2, pp. 754-765 
504 |a Bowler, C., Benvenuto, G., Laflamme, P., Molino, D., Probst, A.V., Tariq, M., Paszkowski, J., Chromatin techniques for plant cells (2004) Plant J., 39, pp. 776-789 
504 |a Calixto, C.P.G., Guo, W., James, A.B., Tzioutziou, N.A., Entizne, J.C., Panter, P.E., Knight, H., Brown, J.W.S., Rapid and dynamic alternative splicing impacts the Arabidopsis Cold Response Transcriptome (2018) Plant Cell, 30, pp. 1424-1444 
504 |a Chen, Y., Chafin, D., Price, D.H., Greenleaf, A.L., Drosophila RNA polymerase II mutants that affect transcription elongation (1996) J. Biol. Chem., 271, pp. 5993-5999 
504 |a Cho, H., Orphanides, G., Sun, X., Yang, X.J., Ogryzko, V., Lees, E., Nakatani, Y., Reinberg, D., A human RNA polymerase II complex containing factors that modify chromatin structure (1998) Mol. Cell. Biol., 18, pp. 5355-5363 
504 |a Danko, C.G., Hah, N., Luo, X., Martins, A.L., Core, L., Lis, J.T., Siepel, A., Kraus, W.L., Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells (2013) Mol. Cell, 50, pp. 212-222 
504 |a de la Mata, M., Alonso, C.R., Kadener, S., Fededa, J.P., Blaustein, M., Pelisch, F., Cramer, P., Kornblihtt, A.R., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol. Cell, 12, pp. 525-532 
504 |a Dolata, J., Guo, Y., Kołowerzo, A., Smoliński, D., Brzyżek, G., Jarmołowski, A., Świeżewski, S., NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis (2015) EMBO J., 34, pp. 544-558 
504 |a Dujardin, G., Lafaille, C., de la Mata, M., Marasco, L.E., Muñoz, M.J., Le Jossic-Corcos, C., Corcos, L., Kornblihtt, A.R., How slow RNA polymerase II elongation favors alternative exon skipping (2014) Mol. Cell, 54, pp. 683-690 
504 |a Fish, R.N., Kane, C.M., Promoting elongation with transcript cleavage stimulatory factors (2002) Biochim. Biophys. Acta, 1577, pp. 287-307 
504 |a Fong, N., Kim, H., Zhou, Y., Ji, X., Qiu, J., Saldi, T., Diener, K., Bentley, D.L., Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate (2014) Genes Dev., 28, pp. 2663-2676 
504 |a Greenleaf, A.L., Weeks, J.R., Voelker, R.A., Ohnishi, S., Dickson, B., Genetic and biochemical characterization of mutants at an RNA polymerase II locus in D. melanogaster (1980) Cell, 21, pp. 785-792 
504 |a Ip, J.Y., Schmidt, D., Pan, Q., Ramani, A.K., Fraser, A.G., Odom, D.T., Blencowe, B.J., Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation (2011) Genome Res., 21, pp. 390-401 
504 |a Jonkers, I., Lis, J.T., Getting up to speed with transcription elongation by RNA polymerase II (2015) Nat. Rev. Mol. Cell Biol., 16, pp. 167-177 
504 |a Kaufmann, I., White, E., Azad, A., Marguerat, S., Bähler, J., Proudfoot, N.J., Transcriptional activation of the general amino acid permease gene per1 by the histone deacetylase Clr6 Is regulated by Oca2 kinase (2010) Mol. Cell. Biol., 30, pp. 3396-3410 
504 |a Kim, J., Guermah, M., Roeder, R.G., The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS (2010) Cell, 140, pp. 491-503 
504 |a Kim, D., Langmead, B., Salzberg, S.L., HISAT: a fast spliced aligner with low memory requirements (2015) Nat. Methods, 12, pp. 357-360 
504 |a Kornblihtt, A.R., Schor, I.E., Alló, M., Dujardin, G., Petrillo, E., Muñoz, M.J., Alternative splicing: a pivotal step between eukaryotic transcription and translation (2013) Nat. Rev. Mol. Cell Biol., 14, pp. 153-165 
504 |a Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The sequence alignment/map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079 
504 |a Listerman, I., Sapra, A.K., Neugebauer, K.M., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat. Struct. Mol. Biol., 13, pp. 815-822 
504 |a Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads (2011) EMBnet J., 17, pp. 10-12 
504 |a Muñoz, M.J., Pérez Santangelo, M.S., Paronetto, M.P., de la Mata, M., Pelisch, F., Boireau, S., Glover-Cutter, K., Lozano, J.J., DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation (2009) Cell, 137, pp. 708-720 
504 |a Nelson, J., Denisenko, O., Bomsztyk, K., The fast chromatin immunoprecipitation method (2009) Methods Mol. Biol., 567, pp. 45-57 
504 |a Oesterreich, F.C., Herzel, L., Straube, K., Hujer, K., Howard, J., Neugebauer, K.M., Splicing of nascent RNA coincides with intron exit from RNA polymerase II (2016) Cell, 165, pp. 372-381 
504 |a Petrillo, E., Godoy Herz, M.A., Fuchs, A., Reifer, D., Fuller, J., Yanovsky, M.J., Simpson, C., Kornblihtt, A.R., A chloroplast retrograde signal regulates nuclear alternative splicing (2014) Science, 344, pp. 427-430 
504 |a Quinlan, A.R., Hall, I.M., BEDTools: a flexible suite of utilities for comparing genomic features (2010) Bioinformatics, 26, pp. 841-842 
504 |a Saldi, T., Cortazar, M.A., Sheridan, R.M., Bentley, D.L., Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing (2016) J. Mol. Biol., 428, pp. 69-81 
504 |a Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 4325-4330 
504 |a Schor, I.E., Fiszbein, A., Petrillo, E., Kornblihtt, A.R., Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation (2013) EMBO J., 32, pp. 2264-2274 
504 |a Sigurdsson, S., Dirac-Svejstrup, A.B., Svejstrup, J.Q., Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability (2010) Mol. Cell, 38, pp. 202-210 
504 |a Simpson, C.G., Fuller, J., Maronova, M., Kalyna, M., Davidson, D., McNicol, J., Barta, A., Brown, J.W.S., Monitoring changes in alternative precursor messenger RNA splicing in multiple gene transcripts (2008) Plant J., 53, pp. 1035-1048 
504 |a Smith, T., Heger, A., Sudbery, I., UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy (2017) Genome Res., 27, pp. 491-499 
504 |a Staiger, D., Brown, J.W.S., Alternative splicing at the intersection of biological timing, development, and stress responses (2013) Plant Cell, 25, pp. 3640-3656 
504 |a Warkocki, Z., Krawczyk, P.S., Adamska, D., Bijata, K., Garcia-Perez, J.L., Dziembowski, A., Uridylation by TUT4/7 restricts retrotransposition of human LINE-1s (2018) Cell, 174, pp. 1537-1548 
504 |a Wickham, H., ggplot2: Elegant Graphics for Data Analysis (2016), Springer-Verlag; Yeo, G., Burge, C.B., Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals (2004) J. Comput. Biol., 11, pp. 377-394 
520 3 |a Light makes carbon fixation possible, allowing plant and animal life on Earth. We have previously shown that light regulates alternative splicing in plants. Light initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing of a subset of Arabidopsis thaliana transcripts. Here, we show that light promotes RNA polymerase II (Pol II) elongation in the affected genes, whereas in darkness, elongation is lower. These changes in transcription are consistent with elongation causing the observed changes in alternative splicing, as revealed by different drug treatments and genetic evidence. The light control of splicing and elongation is abolished in an Arabidopsis mutant defective in the transcription factor IIS (TFIIS). We report that the chloroplast control of nuclear alternative splicing in plants responds to the kinetic coupling mechanism found in mammalian cells, providing unique evidence that coupling is important for a whole organism to respond to environmental cues. Godoy Herz et al. provide biochemical and genetic evidence that plants exposed to light show faster gene transcription than those in the dark. This serves as control for alternative mRNA splicing decisions, which demonstrates that coupling between transcription and splicing is important for a whole organism to respond to environmental cues. © 2018 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT-2015-0341, PICT-2014 2582 
536 |a Detalles de la financiación: Howard Hughes Medical Institute 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020130100152BA 
536 |a Detalles de la financiación: Narodowe Centrum Nauki, UMO-2016/23/B/NZ1/02989 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank Valeria Buggiano, Ignacio Schor, Luciana Giono, and other members of the Kornblihtt and Srebrow labs and G. Corti Bielsa for their invaluable help. This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica of Argentina ( PICT-2014 2582 and PICT-2015-0341 ), the Universidad de Buenos Aires ( UBACYT 20020130100152BA ), and the Howard Hughes Medical Institute . A.R.K. and E.P. are career investigators of and M.A.G.H. and M.G.K. received fellowships from the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET). G.B., M.G.K., and S.S. were supported by a grant from the Polish National Science Centre ( UMO-2016/23/B/NZ1/02989 ). 
593 |a Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), (C1428EHA), Buenos Aires, Argentina 
593 |a Department of Protein Biosynthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland 
593 |a Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, United Kingdom 
690 1 0 |a ALTERNATIVE SPLICING 
690 1 0 |a LIGHT CONTROL IN PLANTS 
690 1 0 |a TRANSCRIPTION ELONGATION 
690 1 0 |a HISTONE 
690 1 0 |a MESSENGER RNA 
690 1 0 |a RNA POLYMERASE II 
690 1 0 |a TRANSCRIPTION FACTOR II 
690 1 0 |a ALTERNATIVE RNA SPLICING 
690 1 0 |a ARABIDOPSIS THALIANA 
690 1 0 |a ARTICLE 
690 1 0 |a CARBON FIXATION 
690 1 0 |a CHLOROPLAST 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DARKNESS 
690 1 0 |a GENETIC TRANSCRIPTION 
690 1 0 |a HISTONE ACETYLATION 
690 1 0 |a INTRON 
690 1 0 |a LIGHT 
690 1 0 |a MAMMAL CELL 
690 1 0 |a MUTANT 
690 1 0 |a NONHUMAN 
690 1 0 |a PLANT 
690 1 0 |a REGULATORY MECHANISM 
690 1 0 |a TRANSCRIPTION ELONGATION 
700 1 |a Kubaczka, M.G. 
700 1 |a Brzyżek, G. 
700 1 |a Servi, L. 
700 1 |a Krzyszton, M. 
700 1 |a Simpson, C. 
700 1 |a Brown, J. 
700 1 |a Swiezewski, S. 
700 1 |a Petrillo, E. 
700 1 |a Kornblihtt, A.R. 
773 0 |d Cell Press, 2019  |g v. 73  |h pp. 1066-1074.e3  |k n. 5  |p Mol. Cell  |x 10972765  |w (AR-BaUEN)CENRE-2298  |t Molecular Cell 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062215196&doi=10.1016%2fj.molcel.2018.12.005&partnerID=40&md5=d2ce76fc3d4156e70e647bcd12dff4a6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.molcel.2018.12.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10972765_v73_n5_p1066_GodoyHerz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10972765_v73_n5_p1066_GodoyHerz  |y Registro en la Biblioteca Digital 
961 |a paper_10972765_v73_n5_p1066_GodoyHerz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86584