Superoxide dismutase 1 expression is modulated by the core pluripotency transcription factors Oct4, Sox2 and Nanog in embryonic stem cells

Redox homeostasis is vital for cellular functions and to prevent the detrimental consequences of oxidative stress. Pluripotent stem cells (PSCs) have an enhanced antioxidant system which supports the preservation of their genome. Besides, reactive oxygen species (ROS) are proposed to be involved in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Solari, C.
Otros Autores: Petrone, M.V, Vazquez Echegaray, C., Cosentino, M.S, Waisman, A., Francia, M., Barañao, L., Miriuka, S., Guberman, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ireland Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14401caa a22013217a 4500
001 PAPER-24936
003 AR-BaUEN
005 20230518205652.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85048855424 
024 7 |2 cas  |a copper zinc superoxide dismutase, 149394-67-2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MEDVE 
100 1 |a Solari, C. 
245 1 0 |a Superoxide dismutase 1 expression is modulated by the core pluripotency transcription factors Oct4, Sox2 and Nanog in embryonic stem cells 
260 |b Elsevier Ireland Ltd  |c 2018 
270 1 0 |m Guberman, A.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica/Laboratorio de Regulación Génica en Células Madre, Intendente Guiraldes 2160, Ciudad Universitaria, Pab. 2, 4to piso, Argentina; email: algub@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Armstrong, L., Tilgner, K., Saretzki, G., Atkinson, S.P., Stojkovic, M., Moreno, R., Przyborski, S., Lako, M., Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells (2010) Stem Cells, 28, pp. 661-673 
504 |a Bigarella, C.L., Liang, R., Ghaffari, S., Stem cells and the impact of ROS signaling (2014) Development, pp. 4206-4218 
504 |a Boward, B., Wu, T., Dalton, S., Control of cell fate through cell cycle and pluripotency networks (2016) Stem Cells, 34 
504 |a Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V.B., Wong, E., Ng, H.H., Integration of external signaling pathways with the core transcriptional network in embryonic stem cells (2008) Cell, 133, pp. 1106-1117. , https://doi.org/10.1016/j.cell.2008.04.043, https://doi.org/S0092-8674(08)00617-X, [pii] 
504 |a Cherepkova, M.Y., Sineva, G.S., Pospelov, V.A., Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway (2016) Cell Death Dis., 7 
504 |a Cho, Y.M., Kwon, S., Pak, Y.K., Seol, H.W., Choi, Y.M., Park Do, J., Park, K.S., Lee, H.K., Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells (2006) Biochem. Biophys. Res. Commun., 348, pp. 1472-1478. , https://doi.org/10.1016/j.bbrc.2006.08.020, https://doi.org/S0006-291X(06)01821-3, [pii] 
504 |a Circu, M.L., Aw, T.Y., Reactive oxygen species, cellular redox systems, and apoptosis (2010) Free Radic. Biol. Med., 48, pp. 749-762 
504 |a Davidson, K.C., Mason, E.A., Pera, M.F., The pluripotent state in mouse and human (2015) Development, 142, pp. 3090-3099 
504 |a Di Rienzo, J.A., Guzman, A.W., Casanoves, F., A multiple-comparisons method based on the distribution of the root node distance of a binary tree (2002) J. Agric. Biol. Environ. Stat., 7, pp. 129-142 
504 |a Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., R., C.W., Infostat - Statistical software. Grupo InfoStat, FCA (2014), Universidad Nacional de Córdoba Argentina [WWW Document]; Elchuri, S., Oberley, T.D., Qi, W., Eisenstein, R.S., Jackson Roberts, L., Van Remmen, H., Epstein, C.J., Huang, T.-T., CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life (2005) Oncogene, 24, pp. 367-380 
504 |a Huang, T.T., Yasunami, M., Carlson, E.J., Gillespie, A.M., Reaume, A.G., Hoffman, E.K., Chan, P.H., Epstein, C.J., Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts (1997) Arch. Biochem. Biophys., 344, pp. 424-432 
504 |a Imamura, Y., Noda, S., Hashizume, K., Shinoda, K., Yamaguchi, M., Uchiyama, S., Shimizu, T., Tsubota, K., Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration (2006) Proc. Natl. Acad. Sci., 103, pp. 11282-11287 
504 |a Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., Ohmura, M., Suda, T., Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells (2006) Nat. Med., 12, pp. 446-451. , https://doi.org/10.1038/nm1388, https://doi.org/nm1388, [pii] 
504 |a Jang, Y.Y., Sharkis, S.J., A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche (2007) Blood, 110, pp. 3056-3063. , https://doi.org/10.1182/blood-2007-05-087759, https://doi.org/blood-2007-05-087759, [pii] 
504 |a Losino, N., Luzzani, C., Solari, C., Boffi, J., Tisserand, M.L., Sevlever, G., Barañao, L., Guberman, A., Maintenance of murine embryonic stem cells’ self-renewal and pluripotency with increase in proliferation rate by a bovine granulosa cell line-conditioned medium (2011) Stem Cells Dev., 20, pp. 1439-1449 
504 |a Losino, N., Waisman, A., Solari, C., Luzzani, C., Espinosa, D.F., Sassone, A., Muro, A.F., Guberman, A., EDA-containing fibronectin increases proliferation of embryonic stem cells (2013) PLoS One, 8 
504 |a Luzzani, C., Solari, C., Losino, N., Ariel, W., Romorini, L., Bluguermann, C., Sevlever, G., Guberman, A., Modulation of chromatin modifying factors’ gene expression in embryonic and induced pluripotent stem cells (2011) Biochem. Biophys. Res. Commun., 410, pp. 816-822 
504 |a Miao, L., St. Clair, D.K., Regulation of superoxide dismutase genes: implcations in diseases (2010) Free Radic. Biol. Med., 47, pp. 344-356 
504 |a Muller, F.L., Song, W., Liu, Y., Chaudhuri, A., Pieke-Dahl, S., Strong, R., Huang, T.-T., Van Remmen, H., Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy (2006) Free Radic. Biol. Med., 40, pp. 1993-2004 
504 |a Nugud, A., Sandeep, D., El-Serafi, A.T., Two faces of the coin: minireview for dissecting the role of reactive oxygen species in stem cell potency and lineage commitment (2018) J. Adv. Res. 
504 |a Ouyang, Z., Zhou, Q., Wong, W.H., ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 21521-21526 
504 |a Reaume, A.G., Elliott, J.L., Hoffman, E.K., Kowall, N.W., Ferrante, R.J., Siwek, D.R., Wilcox, H.M., Snider, W.D., Motor neurons in cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury (1996) Nat. Genet., 13, pp. 43-47 
504 |a Saretzki, G., Armstrong, L., Leake, A., Lako, M., von Zglinicki, T., Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells (2004) Stem Cells, 22, pp. 962-971 
504 |a Saretzki, G., Walter, T., Atkinson, S., Passos, J.F., Bareth, B., Keith, W.N., Stewart, R., Lako, M., Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells (2008) Stem Cells, 26, pp. 455-464. , https://doi.org/10.1634/stemcells.2007-0628, https://doi.org/2007-0628, [pii] 
504 |a Sart, S., Song, L., Li, Y., Controlling redox status for stem cell survival, expansion, and differentiation (2015) Oxidative Med. Cell. Longev., p. 2015 
504 |a Schmelter, M., Ateghang, B., Helmig, S., Wartenberg, M., Sauer, H., Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation (2006) FASEB J., 20, pp. 1182-1184. , https://doi.org/10.1096/fj.05-4723fje, https://doi.org/fj.05-4723fje, [pii] 
504 |a Solari, C., Vázquez Echegaray, C., Cosentino, M.S., Petrone, M.V., Waisman, A., Luzzani, C., Francia, M., Guberman, A., Manganese superoxide dismutase gene expression is induced by Nanog and Oct4, essential pluripotent stem Cells’ transcription factors (2015) PLoS One, 10 
504 |a Solari, C., Echegaray, C.V., Luzzani, C., Cosentino, M.S., Waisman, A., Petrone, M.V., Francia, M., Guberman, A., Protein arginine methyltransferase 8 gene is expressed in pluripotent stem cells and its expression is modulated by the transcription factor Sox2 (2016) Biochem. Biophys. Res. Commun., 473, pp. 6-11 
504 |a Stambrook, P.J., An ageing question: do embryonic stem cells protect their genomes? (2007) Mech. Ageing Dev., 128, pp. 31-35 
504 |a Trouillas, M., Saucourt, C., Guillotin, B., Gauthereau, X., Ding, L., Buchholz, F., Doss, M.X., Boeuf, H., Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives (2009) BMC Genomics, 10, p. 73 
504 |a Ufer, C., Wang, C.C., The roles of glutathione peroxidases during embryo development (2011) Front. Mol. Neurosci., 4 (12) 
504 |a Waisman, A., Vazquez Echegaray, C., Solari, C., Cosentino, M.S., Martyn, I., Deglincerti, A., Ozair, M.Z., Guberman, A., Inhibition of cell division and DNA replication impair mouse-naïve pluripotency exit (2017) J. Mol. Biol. 
504 |a Zelko, I.N., Mariani, T.J., Folz, R.J., Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression (2002) Free Radic. Biol. Med. 
520 3 |a Redox homeostasis is vital for cellular functions and to prevent the detrimental consequences of oxidative stress. Pluripotent stem cells (PSCs) have an enhanced antioxidant system which supports the preservation of their genome. Besides, reactive oxygen species (ROS) are proposed to be involved in both self-renewal maintenance and in differentiation in embryonic stem cells (ESCs). Increasing evidence shows that cellular systems related to the oxidative stress defense decline along differentiation of PSCs. Although redox homeostasis has been extensively studied for many years, the knowledge about the transcriptional regulation of the genes involved in these systems is still limited. In this work, we studied Sod1 gene modulation by the PSCs fundamental transcription factors Oct4, Sox2 and Nanog. We found that this gene, which is expressed in mouse ESCs (mESCs), was repressed when they were induced to differentiate. Accordingly, these factors induced Sod1 promoter activity in a trans-activation assay. Finally, Sod1 mRNA levels were reduced when Oct4, Sox2 and Nanog were down-regulated by a shRNA approach in mESCs. Taken together, we found that PSCs’ key transcription factors are involved in the modulation of Sod1 gene, suggesting a relationship between the pluripotency core and redox homeostasis in these cells. © 2018 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2011-2713 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 112-201101-00243 
536 |a Detalles de la financiación: The authors thank to Carlos Luzzani, Gabriela Chaufan, María del Carmen Ríos, Timoteo Marchini and Pablo Evelson for their helpful assistance. This work was supported by the following grants (to A.G.): ANPCyT , PICT 2011-2713 , CONICET , PIP 112-201101-00243 . CS, MVP, MSC and AW are fellows from CONICET, CVE is a fellow from ANPCyT. 
593 |a Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Química Biológica (IQUIBICEN), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina 
593 |a Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) – CONICET, Buenos Aires, Argentina 
593 |a Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ANTIOXIDANT DEFENSE SYSTEM 
690 1 0 |a CU-ZN SOD 
690 1 0 |a SOD1 
690 1 0 |a TRANSCRIPTIONAL REGULATION 
690 1 0 |a COPPER ZINC SUPEROXIDE DISMUTASE 
690 1 0 |a MESSENGER RNA 
690 1 0 |a MITOCHONDRIAL DNA 
690 1 0 |a OCTAMER TRANSCRIPTION FACTOR 4 
690 1 0 |a SHORT HAIRPIN RNA 
690 1 0 |a TRANSCRIPTION FACTOR NANOG 
690 1 0 |a TRANSCRIPTION FACTOR SOX2 
690 1 0 |a ARTICLE 
690 1 0 |a BINDING SITE 
690 1 0 |a BLASTOCYST 
690 1 0 |a CARDIAC MUSCLE CELL 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL GROWTH 
690 1 0 |a CELL NUCLEUS 
690 1 0 |a CELL SELF-RENEWAL 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CYTOPLASM 
690 1 0 |a DOWN REGULATION 
690 1 0 |a EMBRYONIC STEM CELL 
690 1 0 |a GENE 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENE MUTATION 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a NERVE CELL 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROMOTER REGION 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN TARGETING 
690 1 0 |a SMOOTH MUSCLE CELL 
690 1 0 |a SOD1 GENE 
690 1 0 |a TRANSCRIPTION REGULATION 
700 1 |a Petrone, M.V. 
700 1 |a Vazquez Echegaray, C. 
700 1 |a Cosentino, M.S. 
700 1 |a Waisman, A. 
700 1 |a Francia, M. 
700 1 |a Barañao, L. 
700 1 |a Miriuka, S. 
700 1 |a Guberman, A. 
773 0 |d Elsevier Ireland Ltd, 2018  |g v. 154  |h pp. 116-121  |p Mech. Dev.  |x 09254773  |w (AR-BaUEN)CENRE-6070  |t Mechanisms of Development 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048855424&doi=10.1016%2fj.mod.2018.06.004&partnerID=40&md5=b4ecff9deab165956445164c72616240  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.mod.2018.06.004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09254773_v154_n_p116_Solari  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254773_v154_n_p116_Solari  |y Registro en la Biblioteca Digital 
961 |a paper_09254773_v154_n_p116_Solari  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85889