Cloud computing for fluorescence correlation spectroscopy simulations
Fluorescence microscopy techniques and protein labeling set an inflection point in the way cells are studied. The fluorescence correlation spectroscopy is extremely useful for quantitatively measuring the movement of molecules in living cells. This article presents the design and implementation of a...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , , |
| Formato: | Acta de conferencia Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Springer Verlag
2015
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Fluorescence microscopy techniques and protein labeling set an inflection point in the way cells are studied. The fluorescence correlation spectroscopy is extremely useful for quantitatively measuring the movement of molecules in living cells. This article presents the design and implementation of a system for fluorescence analysis through stochastic simulations using distributed computing techniques over a cloud infrastructure. A highly scalable architecture, accessible to many users, is proposed for studying complex cellular biological processes. A MapReduce algorithm that allows the parallel execution of multiple simulations is developed over a distributed Hadoop cluster using the Microsoft Azure cloud platform. The experimental analysis shows the correctness of the implementation developed and its utility as a tool for scientific computing in the cloud. © Springer International Publishing Switzerland 2015. |
|---|---|
| Bibliografía: | Angiolini, J., Plachta, N., Mocskos, E., Levi, V., Exploring the dynamics of cell processes through simulations of fluorescence microscopy experiments (2015) Biophys. J, 108, pp. 2613-2618 Bartol, T., Land, B., Salpeter, E., Salpeter, M., Monte carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction (1991) Biophys. J, 59 (6), pp. 1290-1307 Buyya, R., Broberg, J., Goscinski, A., (2011) Cloud Computing: Principles and Paradigms, , Wiley, New York Da Silva, M., Nesmachnow, S., Geier, M., Mocskos, E., Angiolini, J., Levi, V., Cristobal, A., Efficient fluorescence microscopy analysis over a volunteer grid/cloud infrastructure (2014) CARLA 2014. CCIS, 485, pp. 113-127. , Hernández, G., Barrios Hernández, C.J., Díaz, G., García Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.), Springer, Heidelberg Elson, E.L., Fluorescence correlation spectroscopy: Past, present, future (2011) Biophys. J, 101 (12), pp. 2855-2870 García, S., Iturriaga, S., Nesmachnow, S., Scientific computing in the Latin America-Europe GISELA grid infrastructure (2011) Proceedings of the 4th High Performance Computing Latin America Symposium, pp. 48-62 Jakovits, P., Srirama, S., Adapting scientific applications to cloud by using distributed computing frameworks (2013) IEEE International Symposium on Cluster Computing and the Grid, pp. 164-167 Kerr, R., Bartol, T., Kaminsky, B., Dittrich, M., Chang, J., Baden, S., Sejnowski, T., Stiles, J., Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces (2008) SIAM J. Sci. Comput, 30 (6), pp. 3126-3149 Li, H., (2009) Introducing Windows Azure, , Apress, Berkely Richman, R., Zirnhelt, H., Fix, S., Large-scale building simulation using cloud computing for estimating lifecycle energy consumption (2014) Can. J. Civ. Eng, 41, pp. 252-262 Stiles, J.R., Bartol, T.M., (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell, Chap 4, pp. 87-127. , CRC Press Stiles, J.R., Van Helden, D., Bartol, T.M., Salpeter, E.E., Salpeter, M.M., Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle (1996) Proc. Natl. Acad. Sci. USA, 93 (12), pp. 5747-5752 Velte, T., Velte, A., Elsenpeter, R., (2009) Cloud Computing, A Practical Approach, , McGraw-Hill Education, New YorkA4 - |
| ISBN: | 9783319269276 |
| ISSN: | 18650929 |
| DOI: | 10.1007/978-3-319-26928-3_3 |