Production of hydrogen by catalytic steam reforming of oxygenated model compounds on Ni-modified supported catalysts. Simulation and experimental study

Steam reforming of two representative components in the aqueous fraction of bio-oil, acetone and ethanol, was investigated over nickel based supported catalysts (Ni/Al2O3). The effect of Rh incorporation (Ni-Rh/Al2O3) and the properties of different γ-Al2O3 used as support was tested. Hydrogen-rich...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González-Gil, R.
Otros Autores: Chamorro-Burgos, I., Herrera, C., Larrubia, M.A, Laborde, M., Mariño, F., Alemany, L.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15832caa a22013937a 4500
001 PAPER-24752
003 AR-BaUEN
005 20230518205640.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84955422833 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJHED 
100 1 |a González-Gil, R. 
245 1 0 |a Production of hydrogen by catalytic steam reforming of oxygenated model compounds on Ni-modified supported catalysts. Simulation and experimental study 
260 |b Elsevier Ltd  |c 2015 
270 1 0 |m Herrera, C.; Tecnologías de Procesos Catalíticos (PROCAT), Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de MálagaSpain; email: concepcionhd@uma.es 
506 |2 openaire  |e Política editorial 
504 |a Kuhn, J.N., Zhao, Z., Felix, L.G., Slimane, R.B., Choi, C.W., Ozkan, U.S., Olivine catalysts for methane and tar- steam reforming (2008) Appl Catal B Environ, 81, pp. 14-26 
504 |a Faroldi, B.M., Lombardo, E.A., Cornaglia, L.M., Irusta, S., Application of ETS-10 microporous titanosilicate as support of Ru nanoparticles for hydrogen production (2012) Appl Catal A Gen, 417-418, pp. 43-52 
504 |a Bradford, M.C.J., Vannice, M.A., CO2 reforming of CH4 (1999) Catal Rev Sci Eng, 41 (1), pp. 1-42 
504 |a Rostrup-Nielsen, J.R., Sehested, J., Hydrogen and synthesis gas by steam and CO2 reforming (2002) Adv Catal, 47, pp. 65-139 
504 |a Hoang, D.L., Chan, S.H., Ding, O.L., Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support (2005) Chem Eng J, 112, pp. 1-11 
504 |a Sá, S., Silva, H., Brandao, L., Sousa, J.M., Mendes, A., Catalysts for methanol steam reforming. A review (2010) Appl Catal B Environ, 99, pp. 43-57 
504 |a García-Diéguez, M., Pieta, I.S., Herrera, M.C., Larrubia, M.A., Alemany, L.J., Improved Pt-Ni nanocatalysts for dry reforming of methane (2010) Appl Catal A: Gen, 377, pp. 191-199 
504 |a García-Diéguez, M., Pieta, I.S., Herrera, M.C., Larrubia, M.A., Alemany, L.J., Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane (2010) J Catal, 270, pp. 136-145 
504 |a García-Diéguez, M., Pieta, I.S., Herrera, M.C., Larrubia, M.A., Alemany, L.J., Rh-Ni nanocatalysts for the CO2 and CO2+H2O reforming of methane (2011) Catal Today, 172, pp. 136-142 
504 |a Parthasarathy, P., Sheeba Narayanan, K., Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield. A review (2014) Renew Energy, 66, pp. 570-579 
504 |a Díaz-Rey, M.R., Cortés-Reyes, M., Herrera, C., Larrubia, M.A., Amadeo, N., Laborde, M., Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification (2014) Catal Today 
504 |a Hu, X., Lu, G., Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO2 emission (2010) Int J Hydrog Energy, 35, pp. 7169-7176 
504 |a Remón, J., Broust, F., Valette, J., Chhiti, Y., Alava, I., Fernandez-Akarregi, A.R., Production of a hydrogen-rich gas from fast pyrolysis bio-oils: Comparison between homogeneous and catalytic steam reforming routes (2014) Int J Hydrog Energy, 39, pp. 171-182 
504 |a Trane, R., Dahl, S., Skøth-Rasmnussen, M.S., Jensen, A.D., Catalytic steam reforming of bio-oil (2012) Int J Hydrog Energy, 37, pp. 6447-6472 
504 |a Bertero, M., De La Puente, G., Sedran, U., Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning (2012) Fuel, 95, pp. 263-271 
504 |a Kechagiopoulos, P.N., Voutetakis, S.S., Lemonidou, A.A., Vasalos, I.A., Sustainable hydrogen production via reforming of ethylene glycol using a novel spouted bed reactor (2007) Catal Today, 127, pp. 246-255 
504 |a Kechagiopoulos, P.N., Voutetakis, S.S., Lemonidou, A.A., Vasalos, I.A., Hydrogen production via steam reforming of the aqueous phase of bio-oil in a fixed bed reactor (2006) Energy & Fuel, 20, pp. 2155-2163 
504 |a Xie, J., Su, D., Yin, X., Wu, C., Zhu, J., Thermodynamic analysis of aqueous phase reforming of three model compounds in bio-oil for hydrogen production (2011) Int J Hydrog Energy, 36, pp. 15561-15572 
504 |a Resini, C., Arrighi, L., Herrera Delgado, M.C., Larrubia Vargas, M.A., Alemany, L.J., Riani, P., Production of hydrogen by steam reforming of C3 organics over Pd-Cu/α-Al2O3 catalyst (2006) Int J Hydrog Energy, 31, pp. 13-19 
504 |a Nogueira, F.G.E., Assaf, P.G.M., Carvalho, H.W.P., Assaf, E.M., Catalytic steam reforming of acetic acid as a model compound of bio-oil (2014) Appl Catal B Environ, 160-161, pp. 188-199 
504 |a Latifi, M., Berruti, F., Briens, C., Non-catalytic and catalytic steam reforming of a bio-oil model compound in a novel "jiggle Bed" reactor (2014) Fuel, 129, pp. 278-291 
504 |a Hu, X., Lu, G., Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst (2007) J Mol Catal A Chem, 261, pp. 43-48 
504 |a Bimbela, F., Oliva, M., Ruiz, J., García, L., Arauzo, J., Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids (2007) J Anal Appl Pyrolysis, 79, pp. 112-120 
504 |a Takanabe, K., Aika, K., Seshan, K., Lefferts, L., Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2 (2006) Chem Eng J, 120, pp. 133-137 
504 |a Vaidya, P.D., Rodrigues, A.E., Insight into steam reforming of ethanol to produce hydrogen for fuel cells (2006) Chem Eng J, 117, pp. 39-49 
504 |a Benito, M., Sanz, J.L., Isabel, R., Padilla, R., Arjona, R., Daza, L., Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production (2005) J Power Sources, 151, pp. 11-17 
504 |a Vicente, J., Ereña, J., Montero, C., Azkoiti, M.J., Bilbao, J., Gayubo, A.G., Reaction pathway for ethanol steam reforming on a Ni/SiO2 catalyst including coke formation (2014) Int J Hydrog Energy, 39, pp. 18820-18834 
504 |a Barattini, L., Ramis, G., Resini, C., Busca, G., Sisani, M., Constantino, U., Reaction path of ethanol and acetic acid steam reforming over Ni-Zn-Al catalysts. Flow reactor studies (2009) Chem Eng J, 153, pp. 43-49 
504 |a Li, Z., Hu, X., Zhang, L., Liu, S., Lu, G., Steam reforming of acetic acid over Ni/ZrO2 catalysts: Effects of nickel loading and particle size on product distribution and coke formation (2012) Appl Catal A Gen, 417-418, pp. 281-289 
504 |a Hu, X., Lu, G., Acetic acid steam reforming to hydrogen over Co-Ce/Al2O3 and Co-La/Al2O3 catalysts. The promotion effect of Ce and la addition (2010) Catal Commun, 2, pp. 50-53 
504 |a Matas Güel, B., Babich, I., Nichols, K.P., Gardeniers, J.G.E., Seshan, K., Design of a stable steam reforming catalyst. A promising route to sustainable hydrogen from biomass oxygenates (2009) Appl Catal B Environ, 90, pp. 38-44 
504 |a Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Güemez, M.B., Navarro, R.M., Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen (2009) Catal Commun, 10, pp. 1275-1278 
504 |a Bettman, M., Chase, R.E., Otto, K., Weber, W.H., Dispersion studies on the system La2O3/α-2O3 (1989) J Catal, 117, pp. 447-454 
504 |a Rioche, C., Kulkarni, S., Meunier, F.C., Breen, J.P., Burch, R., Steam reforming of model compounds and fast pyrolysis bio-oil on supported metal catalysts (2005) Appl Catal B Environ, 61, pp. 130-139 
504 |a Liguras, D.K., Kondarides, D.I., Verykios, X.E., Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts (2003) Appl Catal B Environ, 43, pp. 345-354 
504 |a García-Diéguez, M., Herrera, C., Larrubia, M.A., Alemany, L.J., CO2-reforming of natural gas components over a highly stable and selective NiMg/Al2O3 nanocatalyst (2012) Catal Today, 197, pp. 50-57 
504 |a Phung, T.K., Herrera, C., Larrubia, M.A., García-Diéguez, M., Finocchio, E., Alemany, L.J., Surface and catalytic properties of some γ-Al2O3 powders (2014) Appl Catal A General, 483, pp. 41-51 
504 |a Vagia, E.C., Lemonidou, A.A., Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction (2007) Int J Hydrog Energy, 32, pp. 212-223 
504 |a Da Silva, A.L., Malfatti, C.F., Müller, I.L., Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method: A detailed study of the conditions of carbon deposition (2009) Int J Hydrog Energy, 34, pp. 4321-4330 
504 |a Froment, G., Pijcke, H., Goethals, G., Thermal cracking of acetone - I (1961) Chem Eng Sci, 13, pp. 173-179 
504 |a Sato, K., Hidaka, Y., Shock-Tube modeling study of acetone pyrolysis and oxidation (2000) Combust Flame, 122, pp. 291-311 
504 |a Harris, P.S., Baker, R.T.K., Birch, R.A., The formation of carbon deposits from decomposition of acetone over nickel (1973) Carbon, 11, pp. 531-539 
504 |a Lam, K., Ren, W., Pyun, S.H., Farooq, A., Davidson, D.F., Hanson, R.K., Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis (2013) Proc Combust Inst, 34, pp. 607-615 
504 |a Tsuda, M., Kuratan, K., Thermal decomposition of ketene in shock waves (1698) Bull Chem Soc Jpn, 41, pp. 53-60 
504 |a Youn, M.H., Seo, J.G., Lee, H., Bang, Y., Chung, J.S., Song, I.K., Hydrogen production by auto thermal reforming of ethanol over nickel catalysts supported on metal oxides: Effect of support acidity (2010) Appl Catal B Environ, 98, pp. 57-64 
504 |a Seker, E., The catalytic reforming of bio-ethanol over SiO2 supported ZnO catalysts: The role of ZnO loading and the steam reforming of acetaldehyde (2008) Int J Hydrog Energy, 33, pp. 22044-22052 
504 |a Elias, K.F.M., Lucrédio, A.F., Assaf, E.M., Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming (2013) Int J Hydrog Energy, 38, pp. 4407-4417 
504 |a Phung, T.K., Lagazzo, A., Rivero Crespo, M.A., Ecribano, V.S., Busca, G., A study of commercial transition aluminas and of their catalytic activity in the dehydration of ethanol (2014) J Catal, 311, pp. 102-113 
504 |a Choong, C.K.S., Huang, L., Zhong, Z., Lin, J., Hong, L., Chen, L., Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: II. Acidity/basicity, water adsorption and catalytic activity (2011) Appl Catal A Gen, 407, pp. 155-162 
504 |a Nishiguchi, T., Matsumoto, T., Kanai, H., Utani, K., Matsumura, Y., Shen, W., Catalytic steam reforming of ethanol to produced hydrogen and acetone (2005) Appl Catal A Gen, 279, pp. 273-277 
504 |a López, E., Divins, N.J., Anzola, A., Schbib, S., Borio, D., Llorca, J., Ethanol steam reforming for hydrogen generation over structured catalysts (2013) Int J Hydrog Energy, 38, pp. 4418-4428 
504 |a Ulla, M.A., Valera, A., Ubieto, T., Latorre, N., Romeo, E., Milt, V.G., Carbon nanofiber growth onto a cordierite monolith coated with co-mordenite (2008) Catal Today, 133, pp. 7-12 
504 |a Navarro, R.M., Guil-Lopez, R., González-Carballo, J.M., Cubero, A., Ismail, A.A., Al-Sayari, S.A., Bimetallic MNi/Al2O3-La catalysts (M=Pt, Cu) for acetone steam reforming: Role of M on catalyst structure and activity (2014) Appl Catal A Gen, 474, pp. 168-177 
504 |a Vagia, E.Ch., Lemonidou, A.A., Hydrogen production via steam reforming of bio-oil components over calcium aluminate supported nickel and noble metal catalysts (2008) Appl Catal A Gen, 351, pp. 111-121 
504 |a Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y., Shen, W., Steam reforming of bio-ethanol over ceria-supported Co, Ir and Ni catalysts (2006) Catal Commun, 7, pp. 367-372 
504 |a Llera, I., Mas, V., Bergamini, M.L., Laborde, M., Amadeo, N., Bio-ethanol steam reforming on Ni based catalyst. Kinetic study (2012) Chem Eng Sci, 71, pp. 356-366 
520 3 |a Steam reforming of two representative components in the aqueous fraction of bio-oil, acetone and ethanol, was investigated over nickel based supported catalysts (Ni/Al2O3). The effect of Rh incorporation (Ni-Rh/Al2O3) and the properties of different γ-Al2O3 used as support was tested. Hydrogen-rich gas is produced at temperatures higher than 673 K in both acetone and ethanol reforming with maximum mole fraction of 0.6-0.7. The reactions involved and the possible routes were studied. Rh incorporation and nanostructured alumina affects the Ni metal size and the amount of carbon deposited onto catalysts' surface after reforming tests; besides, acetone is also found as an important intermediate in ethanol reforming, and Rh improve hydrogen production with negligible intermediates presence. The effect of S/Acetone or S/Ethanol feed molar ratios, space velocity and temperature over acetone/ethanol conversion and over H2/CO ratio were modeled using the Matlab software in order to find the regions and the optimal operating conditions in both processes. Simulation results are consistent with the experimental data. © 2015 Hydrogen Energy Publications, LLC. All rights reserved.  |l eng 
536 |a Detalles de la financiación: PRI-PIBAR 2011-1343 
536 |a Detalles de la financiación: The authors want to acknowledge to the Spanish Ministry of Economy and Competitiveness the Financial support of PRI-PIBAR 2011-1343 . 
593 |a Tecnologías de Procesos Catalíticos (PROCAT), Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de MálagaE-29071, Spain 
593 |a ITHES (CONICET/Universidad de Buenos Aires) - Pabellón de Industrias, Ciudad Universitaria1428, Argentina 
690 1 0 |a HYDROGEN 
690 1 0 |a MATHEMATICAL MODEL 
690 1 0 |a NI-MODIFIED CATALYSTS 
690 1 0 |a OXYGENATED COMPOUNDS 
690 1 0 |a STEAM REFORMING 
690 1 0 |a ACETONE 
690 1 0 |a ALUMINA 
690 1 0 |a CATALYST SUPPORTS 
690 1 0 |a CATALYSTS 
690 1 0 |a CATALYTIC REFORMING 
690 1 0 |a ETHANOL 
690 1 0 |a HYDROGEN 
690 1 0 |a HYDROGEN PRODUCTION 
690 1 0 |a MATHEMATICAL MODELS 
690 1 0 |a MATLAB 
690 1 0 |a NICKEL 
690 1 0 |a RHODIUM 
690 1 0 |a AQUEOUS FRACTIONS 
690 1 0 |a CATALYTIC STEAM REFORMING 
690 1 0 |a ETHANOL REFORMING 
690 1 0 |a HYDROGEN-RICH GAS 
690 1 0 |a NI-MODIFIED 
690 1 0 |a OPTIMAL OPERATING CONDITIONS 
690 1 0 |a OXYGENATED COMPOUNDS 
690 1 0 |a PRODUCTION OF HYDROGEN 
690 1 0 |a STEAM REFORMING 
650 1 7 |2 spines  |a CARBON 
700 1 |a Chamorro-Burgos, I. 
700 1 |a Herrera, C. 
700 1 |a Larrubia, M.A. 
700 1 |a Laborde, M. 
700 1 |a Mariño, F. 
700 1 |a Alemany, L.J. 
773 0 |d Elsevier Ltd, 2015  |g v. 40  |h pp. 11217-11227  |k n. 34  |p Int. J. Hydrogen Energy  |x 03603199  |w (AR-BaUEN)CENRE-5264  |t International Journal of Hydrogen Energy 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955422833&doi=10.1016%2fj.ijhydene.2015.05.167&partnerID=40&md5=0a7b44ed4d6c4a92b2b55679651b45f0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ijhydene.2015.05.167  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03603199_v40_n34_p11217_GonzalezGil  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03603199_v40_n34_p11217_GonzalezGil  |y Registro en la Biblioteca Digital 
961 |a paper_03603199_v40_n34_p11217_GonzalezGil  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85705