A posteriori error estimator for exponentially fitted Discontinuous Galerkin approximation of advection dominated problems

The paper deals with the weakly penalized exponentially fitted incomplete interior penalty (EF-IIPG0) scheme for advection-diffusion problems. In the first part of the paper, the (Formula presented.) -matrix property on conforming weakly-acute meshes is discussed. In the second part, an a posteriori...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lombardi, A.L
Otros Autores: Pietra, P., Prieto, M.I
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer-Verlag Italia s.r.l. 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06624caa a22005897a 4500
001 PAPER-24510
003 AR-BaUEN
005 20230518205623.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84959116985 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lombardi, A.L. 
245 1 2 |a A posteriori error estimator for exponentially fitted Discontinuous Galerkin approximation of advection dominated problems 
260 |b Springer-Verlag Italia s.r.l.  |c 2016 
270 1 0 |m Pietra, P.; Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”-CNR, Via Ferrata 1, Italy; email: pietra@imati.cnr.it 
506 |2 openaire  |e Política editorial 
504 |a Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02); Cangiani, A., Georgoulis, E.H., Metcalfe, S., Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems (2014) IMA J. Numer. Anal., 34 (4), pp. 1578-1597 
504 |a Ciarlet, P.G., (1978) Studies in Mathematics and its Applications, vol. 4, , The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford 
504 |a Ayuso de Dios, B., Brezzi, F., Havle, O., Marini (2012) L.D.: L2 -estimates for the DG IIPG-0 scheme. Numer. Methods Partial Differ. Equ, 28 (5), pp. 1440-1465 
504 |a Ayuso de Dios, B., Lombardi, A.L., Pietra, P., Zikatanov, L., A block solver for the exponentially fitted IIPG-0 method (2013) Lecture Notes in Computational Science and Engineering 91, pp. 239-246 
504 |a Houston, P., Schötzau, D., Wihler, T.P.: Energy norm a posteriori error estimation of hp -adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17(1), 33–62 (2007); Karakashian, O.A., Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems (2003) SIAM J. Numer. Anal., 41 (6), pp. 2374-2399. , (electronic) 
504 |a Karakashian, O.A., Pascal, F., Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems (2007) SIAM J. Numer. Anal., 45 (2), pp. 641-665. , (electronic) 
504 |a Lombardi, A.L., Pietra, P., Exponentially fitted discontinuous Galerkin schemes for singularly perturbed problems (2012) Numer. Methods Partial Differ. Equ., 28 (6), pp. 1747-1777 
504 |a Lovadina, C., Marini, L.D., A-posteriori error estimates for discontinuous Galerkin approximations of second order elliptic problems (2009) J. Sci. Comput., 40 (1-3), pp. 340-359 
504 |a Roos, H.G., Stynes, M., Tobiska, L., (2008) Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, , Springer Series in Computational Mathematics, vol. 24, Springer, Berlin 
504 |a Sangalli, G., Robust a-posteriori estimator for advection-diffusion-reaction problems (2008) Math. Comput., 77 (261), pp. 41-70. , (electronic) 
504 |a Schötzau, D., Zhu, L., A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations (2009) Appl. Numer. Math., 59 (9), pp. 2236-2255 
504 |a Scott, L.R., Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions (1990) Math. Comput., 54 (190), pp. 483-493 
504 |a Verfürth, R., Robust a posteriori error estimates for stationary convection-diffusion equations (2005) SIAM J. Numer. Anal., 43 (4), pp. 1766-1782. , (electronic) 
504 |a Zhu, L., Schötzau, D., A robust a posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations (2011) IMA J. Numer. Anal., 31 (3), pp. 971-1005 
520 3 |a The paper deals with the weakly penalized exponentially fitted incomplete interior penalty (EF-IIPG0) scheme for advection-diffusion problems. In the first part of the paper, the (Formula presented.) -matrix property on conforming weakly-acute meshes is discussed. In the second part, an a posteriori error estimate is derived. The estimator, especially designed for the advection dominated case, controls the energy norm as well as a semi-norm associated with the advective derivative, taking full advantage of the formulation on non-matching grids. The paper is supplemented by numerical experiments, where the estimator is used as local error indicator for marking the triangles to be refined in an adaptive strategy. © 2015, Springer-Verlag Italia.  |l eng 
536 |a Detalles de la financiación: 2011-2013, 2011-2012, IT/10/05 AR11M06 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors acknowledge partial support by the Argentine-Italy bilateral projects Innovative numerical methods for industrial problems with complex and mobile geometries funded by CNR-CONICET (2011-2012) and by MinCyT-MAE (2011-2013) IT/10/05 AR11M06. First and third authors are members of CONICET, Argentina. 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, Los Polvorines, Provincia de Buenos Aires B1613GSX, Argentina 
593 |a Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”-CNR, Via Ferrata 1, Pavia, 27100, Italy 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
690 1 0 |a A POSTERIORI ESTIMATOR 
690 1 0 |a ADVECTION-DIFFUSION EQUATIONS 
690 1 0 |a DISCONTINUOUS GALERKIN METHODS 
690 1 0 |a EXPONENTIALLY FITTED SCHEMES 
690 1 0 |a M -MATRIX PROPERTY 
700 1 |a Pietra, P. 
700 1 |a Prieto, M.I. 
773 0 |d Springer-Verlag Italia s.r.l., 2016  |g v. 53  |h pp. 83-103  |k n. 1  |p Calcolo  |x 00080624  |t Calcolo 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959116985&doi=10.1007%2fs10092-015-0138-z&partnerID=40&md5=d88d24f3ad28b6f12233fd79926063c2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10092-015-0138-z  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00080624_v53_n1_p83_Lombardi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00080624_v53_n1_p83_Lombardi  |y Registro en la Biblioteca Digital 
961 |a paper_00080624_v53_n1_p83_Lombardi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85463