A general allometric and life-history model for cellular differentiation in the transition to multicellularity

The transition from unicellular, to colonial, to larger multicellular organisms has benefits, costs, and requirements. Here we present a model inspired by the volvocine green algae that explains the dynamics involved in the unicellular-multicellular transition using life-history theory and allometry...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Solari, C.A
Otros Autores: Kessler, J.O, Goldstein, R.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08481caa a22010697a 4500
001 PAPER-24324
003 AR-BaUEN
005 20230518205609.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84874605540 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a AMNTA 
100 1 |a Solari, C.A. 
245 1 2 |a A general allometric and life-history model for cellular differentiation in the transition to multicellularity 
260 |c 2013 
270 1 0 |m Solari, C. A.; Laboratorio de Biología Comparada de Protistas, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; email: casolari@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Gavrilets, S., Rapid transition towards the division of labor via evolution of developmental plasticity (2010) PLoS Computational Biology, 6, pp. e1000805 
504 |a Graham, L.E., Wilcox, L.W., (2000) Algae, , Prentice Hall, Englewood Cliffs, NJ 
504 |a Grosberg, R.K., Strathmann, R.R., The evolution of multicellularity: A minor major transition? (2007) Annual Review of Ecology, Evolution, and Systematics, 38, pp. 621-654 
504 |a Guyon, E., Hulin, J.P., Petit, L., Mitescu, C.D., (2001) Physical Hydrodynamics, , Oxford University Press, New York 
504 |a Herron, M.D., Michod, R.E., Evolution of complexity in the volvocine algae: Transitions in individuality through Darwin's eye (2008) Evolution, 62, pp. 436-451 
504 |a Hoops, H.J., Motility in the colonial and multicellular Volvocales: Structure, function, and evolution (1997) Protoplasma, 199, pp. 99-112 
504 |a Kirk, D.L., The genetic program for germ-soma differentiation in Volvox (1997) Annual Review of Genetics, 31, pp. 359-380 
504 |a Kirk, D.L., (1998) Volvox: Molecular-genetic Origins of Multicellularity and Cellular Differentiation, , Cambridge University Press, Cambridge 
504 |a Koufopanou, V., The evolution of soma in the Volvocales (1994) American Naturalist, 143, pp. 907-931 
504 |a Larson, A., Kirk, M.M., Kirk, D.L., Molecular phylogeny of the volvocine flagellates (1992) Molecular Biology and Evolution, 9, pp. 85-105 
504 |a Michod, R.E., Viossat, Y., Solari, C.A., Hurand, M., Nedelcu, A.M., Life-history evolution and the origin of multicellularity (2006) Journal of Theoretical Biology, 239, pp. 257-272 
504 |a Morgan, N.C., Secondary production (1980) The Functioning of Freshwater Ecosystems. International Biological Programme Synthesis Series 22, pp. 247-340. , in E. D. Le Cren and R. H. Lowe-McConnell, eds., Cambridge University Press, Cambridge 
504 |a Niklas, K.J., (1994) Plant Allometry: The Scaling of Form and Process, , University of Chicago Press, Chicago 
504 |a Niklas, K.J., The evolution of plant body plans: A biomechanical perspective (2000) Annals of Botany, 85, pp. 411-438 
504 |a Nozaki, H., Ott, F.D., Coleman, A.W., Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae) (2006) Journal of Phycology, 42, pp. 1072-1080 
504 |a Porter, K.G., The plant-animal interface in freshwater ecosystems (1977) American Scientist, 65, pp. 159-170 
504 |a Short, M.B., Solari, C.A., Ganguly, S., Powers, T.R., Kessler, J.O., Goldstein, R.E., Flows driven by flagella of multicellular organisms enhance log-range molecular transport (2006) Proceedings of the National Academy of Sciences of the USA, 103, pp. 8315-8319 
504 |a Solari, C.A., Ganguly, S., Kessler, J.O., Michod, R.E., Goldstein, R.E., Multicellularity and the functional interdependence of motility and molecular transport (2006) Proceedings of the National Academy of Sciences of the USA, 103, pp. 1353-1358 
504 |a Solari, C.A., Kessler, J.O., Michod, R.E., A hydrodynamics approach to the evolution of multicellularity: Flagellar motility and the evolution of germ-soma differentiation in volvocalean green algae (2006) American Naturalist, 167, pp. 537-554 
504 |a Sommer, U., Gliwicz, Z.M., Long-range vertical migration of Volvox in tropical Lake Cahora Bassa (Mozambique) (1986) Limnology and Oceanography, 31, pp. 650-653 
504 |a Stearns, S.C., (1992) The Evolution of Life Histories, , Oxford University Press, Oxford 
504 |a Willensdorfer, M., On the evolution of differentiated multicellularity (2009) Evolution, 63, pp. 306-323 
520 3 |a The transition from unicellular, to colonial, to larger multicellular organisms has benefits, costs, and requirements. Here we present a model inspired by the volvocine green algae that explains the dynamics involved in the unicellular-multicellular transition using life-history theory and allometry. We model the two fitness components (fecundity and viability) and compare the fitness of hypothetical colonies of different sizes with varying degrees of cellular differentiation to understand the general principles that underlie the evolution of multicellularity. We argue that germ-soma separation may have evolved to counteract the increasing costs and requirements of larger multicellular colonies. The model shows that the cost of investing in soma decreases with size. For lineages such as the Volvocales, as reproduction costs increase with size for undifferentiated colonies, soma specialization benefits the colony indirectly by decreasing such costs and directly by helping reproductive cells acquire resources for their metabolic needs. Germ specialization is favored once soma evolves and takes care of vegetative functions. To illustrate the model, we use some allometric relationships measured in Volvocales. Our analysis shows that the cost of reproducing an increasingly larger group has likely played an important role in the transition to multicellularity and cellular differentiation. © 2013 by The University of Chicago. 0003-0147/2013/18103-54025{ARS}15.00. All rights reserved.  |l eng 
593 |a Laboratorio de Biología Comparada de Protistas, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina 
593 |a Department of Physics, University of Arizona, Tucson AZ 85721, Argentina 
593 |a Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB30WA, United Kingdom 
690 1 0 |a BODY SIZE 
690 1 0 |a COST OF REPRODUCTION 
690 1 0 |a GERM-SOMA DIFFERENTIATION 
690 1 0 |a LIFE-HISTORY EVOLUTION 
690 1 0 |a MULTICELLULARITY 
690 1 0 |a VOLVOCALES 
690 1 0 |a ALLOMETRY 
690 1 0 |a CELL ORGANELLE 
690 1 0 |a COLONY 
690 1 0 |a COST-BENEFIT ANALYSIS 
690 1 0 |a FECUNDITY 
690 1 0 |a GREEN ALGA 
690 1 0 |a LIFE HISTORY THEORY 
690 1 0 |a REPRODUCTIVE COST 
690 1 0 |a SPECIALIZATION 
690 1 0 |a VIABILITY 
690 1 0 |a ARTICLE 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a BODY SIZE 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CYTOLOGY 
690 1 0 |a EVOLUTION 
690 1 0 |a FERTILITY 
690 1 0 |a GENETICS 
690 1 0 |a GERM CELL 
690 1 0 |a GREEN ALGA 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a REPRODUCTION 
690 1 0 |a REPRODUCTIVE FITNESS 
690 1 0 |a BIOLOGICAL EVOLUTION 
690 1 0 |a BODY SIZE 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CHLOROPHYTA 
690 1 0 |a FERTILITY 
690 1 0 |a GENETIC FITNESS 
690 1 0 |a GERM CELLS 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a REPRODUCTION 
700 1 |a Kessler, J.O. 
700 1 |a Goldstein, R.E. 
773 0 |d 2013  |g v. 181  |h pp. 369-380  |k n. 3  |p Am. Nat.  |x 00030147  |w (AR-BaUEN)CENRE-201  |t American Naturalist 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874605540&doi=10.1086%2f669151&partnerID=40&md5=a3756283211bd48a7c7de91478cd234c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1086/669151  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00030147_v181_n3_p369_Solari  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00030147_v181_n3_p369_Solari  |y Registro en la Biblioteca Digital 
961 |a paper_00030147_v181_n3_p369_Solari  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85277