The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice

Mutant Wobbler mice are models for human amyotrophic lateral sclerosis (ALS). In addition to spinal cord degeneration, Wobbler mice show high levels of blood corticosterone, hyperactivity of the hypothalamic-pituitary-adrenal axis and abnormalities of the hippocampus. Hypersecretion of glucocorticoi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Meyer, M.
Otros Autores: Gonzalez Deniselle, M.C, Hunt, H., Kloet, E.R.D, De Nicola, A.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2014
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 25367caa a22025217a 4500
001 PAPER-24058
003 AR-BaUEN
005 20230518205550.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84896124043 
024 7 |2 cas  |a corticosterone, 50-22-6; doublecortin, 202938-39-4; Anti-Inflammatory Agents; Aza Compounds; CORT 108297; Corticosterone; doublecortin protein; Glial Fibrillary Acidic Protein; Heterocyclic Compounds with 4 or More Rings; Microtubule-Associated Proteins; Nerve Tissue Proteins; NeuN protein, mouse; Neuropeptides; Nuclear Proteins; Receptors, Glucocorticoid 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JSBBE 
100 1 |a Meyer, M. 
245 1 4 |a The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice 
260 |b Elsevier Ltd  |c 2014 
270 1 0 |m De Nicola, A.F.; Instituto de Biologia y Medicina Experimental, Laboratort of Neuroendocrine Biochemistry, Obligado 2490, 1428 Buenos Aires, Argentina; email: alejandrodenicola@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Gordon, P.H., Amyotrophic Lateral Sclerosis: An update for 2013 clinical features, pathophysiology, management and therapeutic trials (2013) Aging Dis., 4, pp. 295-310 
504 |a Brettschneider, J., Del Tredici, K., Toledo, J.B., Robinson, J.L., Irwin, D.J., Grossman, M., Suh, E., Trojanowski, J.Q., Stages of pTDP-43 pathology in amyotrophic lateral sclerosis (2013) Ann. Neurol., 74, pp. 20-38 
504 |a Takeda, T., Uchihara, T., Arai, N., Mizutani, T., Iwata, M., Progression of hippocampal degeneration in amyotrophic lateral sclerosis with or without memory impairment: Distinction from Alzheimer disease (2009) Acta Neuropathol., 117, pp. 35-44 
504 |a Yokota, O., Terada, S., Ishizu, H., Ishihara, T., Nakashima, H., Kugo, A., Tsuchiya, K., Kuroda, S., Increased expression of neuronal cyclooxygenase-2 in the hippocampus in amyotrophic lateral sclerosis both with and without dementia (2004) Acta Neuropathologica, 107 (5), pp. 399-405. , DOI 10.1007/s00401-004-0826-2 
504 |a Schmitt-John, T., Drepper, C., Mussmann, A., Hahn, P., Kuhlmann, M., Thiel, C., Hafner, M., Jockusch, H., Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse (2005) Nature Genetics, 37 (11), pp. 1213-1215. , DOI 10.1038/ng1661, PII N1661 
504 |a Meyer, M., Gonzalez Deniselle, M.C., Gargiulo-Monachelli, G., Lima, A., Roig, P., Guennoun, R., Schumacher, M., De Nicola, A.F., Progesterone attenuates several hippocampal abnormalities of the Wobbler mouse (2013) J. Neuroendocrinol., 25, pp. 235-243 
504 |a Patacchioli, F.R., Monnazzi, P., Scontrini, A., Tremante, E., Caridi, I., Brunetti, E., Buttarelli, F.R., Pontieri, F.E., Adrenal dysregulation in amyotrophic lateral sclerosis (2003) J. Endocrinol. Invest., 26, pp. 23-RC25 
504 |a Gargiulo Monachelli, G., Meyer, M., Rodriguez, G.E., Garay, L.I., Sica, R.E., De Nicola, A.F., Gonzalez Deniselle, M.C., Endogenous progesterone is associated to amyotrophic lateral sclerosis prognostic factors (2011) Acta Neurol. Scand., 123, pp. 60-67 
504 |a Roozendaal, B., Kim, S., Wolf, O.T., Kim, M.S., Sung, K.K., Lee, S., The cortisol awakening response in amyotrophic lateral sclerosis is blunted and correlates with clinical status and depressive mood (2012) Psychoneuroendocrinology, 37, pp. 20-26 
504 |a Fidler, J.A., Treleaven, C.M., Frakes, A., Tamsett, T.J., McCrate, M., Cheng, S.H., Shihabuddin, L.S., Dodge, J.C., Disease progression in a mouse model of amyotrophic lateral sclerosis: The influence of chronic stress and corticosterone (2011) FASEB J., 25, pp. 4369-4377 
504 |a Gonzalez Deniselle, M.C., Gonzalez, S., Piroli, G., Ferrini, M., Lima, A.E., De Nicola, A.F., Glucocorticoid receptors and actions in the spinal cord of the Wobbler mouse a model for neurodegenerative diseases (1997) Journal of Steroid Biochemistry and Molecular Biology, 60 (3-4), pp. 205-213. , DOI 10.1016/S0960-0760(96)00193-8, PII S0960076096001938 
504 |a Green, K.N., Billings, L.M., Roozendaal, B., McGaugh, J.L., LaFerla, F.M., Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer's disease (2006) Journal of Neuroscience, 26 (35), pp. 9047-9056. , http://www.jneurosci.org/cgi/reprint/26/35/9047.pdf, DOI 10.1523/JNEUROSCI.2797-06.2006 
504 |a Revsin, Y., Rekers, N.V., Louwe, M.C., Saravia, F.E., De Nicola, A.F., De Kloet, E.R., Oitzl, M.S., Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice (2009) Neuropsychopharmacology, 34, pp. 747-758 
504 |a Yi, S.S., Hwang, I.K., Shin, J.H., Choi, J.H., Lee, C.H., Kim, I.Y., Kim, Y.N., Yoon, Y.S., Regulatory mechanism of hypothalamo-pituitary-adrenal (HPA) axis and neuronal changes after adrenalectomy in type 2 diabetes (2010) J. Chem. Neuroanat., 40, pp. 130-139 
504 |a Bigini, P., Repici, M., Cantarella, G., Fumagalli, E., Barbera, S., Cagnotto, A., De Luigi, A., Mennini, T., Recombinant human TNF-binding protein-1 (rhTBP-1) treatment delays both symptoms progression and motor neuron loss in the wobbler mouse (2008) Neurobiol. Dis., 29, pp. 465-476 
504 |a Boillee, S., Viala, L., Peschanski, M., Dreyfus, P.A., Differential microglial response to progressive neurodegeneration in the murine mutant wobbler (2001) GLIA, 33 (4), pp. 277-287. , DOI 10.1002/1098-1136(20010315)33:4<277::AID-GLIA1026>3.0.CO;2-Y 
504 |a De Paola, M., Mariani, A., Bigini, P., Peviani, M., Ferrara, G., Molteni, M., Gemma, S., Fanelli, R., Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration (2012) Mol. Med., 18, pp. 971-981 
504 |a Rathke-Hartlieb, S., Schmidt, V.C., Jockusch, H., Schmitt-John, T., Bartsch, J.W., Spatiotemporal progression of neurodegeneration and glia activation in the wobbler neuropathy of the mouse (1999) Neuroreport, 10, pp. 3411-3416 
504 |a Schlomann, U., Rathke-Hartlieb, S., Yamamoto, S., Jockusch, H., Bartsch, J.W., Tumor necrosis factor alpha induces a metalloprotease-disintegrin, ADAM8 (CD 156): Implications for neuron-glia interactions during neurodegeneration (2000) J. Neurosci., 20, pp. 7964-7971 
504 |a Anacker, C., Cattaneo, A., Luoni, A., Musaelyan, K., Zunszain, P.A., Milanesi, E., Rybka, J., Pariante, C.M., Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis (2013) Neuropsychopharmacology, 38, pp. 872-883 
504 |a Cameron, H.A., Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus (1994) Neuroscience, 61 (2), pp. 203-209. , DOI 10.1016/0306-4522(94)90224-0 
504 |a Ekdahl, C.T., Microglial activation - Tuning and pruning adult neurogenesis (2012) Front Pharmacol., 3, p. 41 
504 |a Gould, E., The effects of adrenal steroids and excitatory input on neuronal birth and survival (1994) Ann. N.Y. Acad. Sci., 743, pp. 73-92 
504 |a Monje, M.L., Toda, H., Palmer, T.D., Inflammatory Blockade Restores Adult Hippocampal Neurogenesis (2003) Science, 302 (5651), pp. 1760-1765. , DOI 10.1126/science.1088417 
504 |a Voloboueva, L.A., Giffard, R.G., Inflammation, mitochondria, and the inhibition of adult neurogenesis (2011) J. Neurosci. Res., 89, pp. 1989-1996 
504 |a Llorens-Martin, M., Trejo, J.L., Mifepristone prevents stress-induced apoptosis in newborn neurons and increases AMPA receptor expression in the dentate gyrus of C57/BL6 mice (2011) PLoS One, 6, p. 28376 
504 |a Oomen, C.A., Mayer, J.L., De Kloet, E.R., Joels, M., Lucassen, P.J., Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress (2007) European Journal of Neuroscience, 26 (12), pp. 3395-3401. , DOI 10.1111/j.1460-9568.2007.05972.x 
504 |a Clark, R.D., Ray, N.C., Williams, K., Blaney, P., Ward, S., Crackett, P.H., Hurley, C., Belanoff, J., 1H-Pyrazolo[3,4-g]hexahydro-isoquinolines as selective glucocorticoid receptor antagonists with high functional activity (2008) Bioorganic and Medicinal Chemistry Letters, 18 (4), pp. 1312-1317. , DOI 10.1016/j.bmcl.2008.01.027, PII S0960894X08000413 
504 |a Brown, J.P., Couillard-Despres, S., Cooper-Kuhn, C.M., Winkler, J., Aigner, L., Kuhn, H.G., Transient Expression of Doublecortin during Adult Neurogenesis (2003) Journal of Comparative Neurology, 467 (1), pp. 1-10. , DOI 10.1002/cne.10874 
504 |a Pietranera, L., Lima, A., Roig, P., De Nicola, A.F., Involvement of brain-derived neurotrophic factor and neurogenesis in oestradiol neuroprotection of the hippocampus of hypertensive rats (2010) J. Neuroendocrinol., 22, pp. 1082-1092 
504 |a Keith, B.J.F., George, P., (1997) The Mouse Brain in Stereotaxic Coordinates, , Academic Press 
504 |a Beauquis, J., Roig, P., De Nicola, A.F., Saravia, F., Short-term environmental enrichment enhances adult neurogenesis, vascular network and dendritic complexity in the hippocampus of type 1 diabetic mice (2010) PLoS One, 5, p. 13993 
504 |a Ciriza, I., Carrero, P., Frye, C.A., Garcia-Segura, L.M., Reduced metabolites mediate neuroprotective effects of progesterone in the adult rat hippocampus. The synthetic progestin medroxyprogesterone acetate (Provera) is not neuroprotective (2006) Journal of Neurobiology, 66 (9), pp. 916-928. , DOI 10.1002/neu.20293 
504 |a Kreutzberg, G.W., Microglia, the first line of defence in brain pathologies (1995) Arzneimittelforschung., 45, pp. 357-360 
504 |a Cymeryng, C.B., Dada, L.A., Podesta, E.J., Effect of nitric oxide on rat adrenal zona fasciculata steroidogenesis (1998) Journal of Endocrinology, 158 (2), pp. 197-203. , DOI 10.1677/joe.0.1580197 
504 |a Gonzalez Deniselle, M.C., Lopez-Costa, J.J., Saavedra, J.P., Pietranera, L., Gonzalez, S.L., Garay, L., Guennoun, R., De Nicola, A.F., Progesterone neuroprotection in the Wobbler mouse, a genetic model of spinal cord motor neuron disease (2002) Neurobiology of Disease, 11 (3), pp. 457-468. , DOI 10.1006/nbdi.2002.0564 
504 |a De Kloet, E.R., Karst, H., Joels, M., Corticosteroid hormones in the central stress response: Quick-and-slow (2008) Front. Neuroendocrinol., 29, pp. 268-272 
504 |a Sapolsky, R.M., Krey, L.C., McEwen, B.S., The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis (1986) Endocr. Rev., 7, pp. 284-301 
504 |a Baglietto-Vargas, D., Medeiros, R., Martinez-Coria, H., Laferla, F.M., Green, K.N., Mifepristone alters amyloid precursor protein processing to preclude amyloid beta and also reduces tau pathology (2013) Biol. Psychiatry, 74, pp. 357-366 
504 |a Zhang, Z., Yang, R., Zhou, R., Li, L., Sokabe, M., Chen, L., Progesterone promotes the survival of newborn neurons in the dentate gyrus of adult male mice (2010) Hippocampus, 20, pp. 402-412 
504 |a Zalachoras, I., Houtman, R., Atucha, E., Devos, R., Tijssen, A.M., Hu, P., Lockey, P.M., Meijer, O.C., Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator (2013) PNAS, 110, pp. 7910-7915 
504 |a Ferrini, M., Piroli, G., Frontera, M., Falbo, A., Lima, A., De Nicola, A.F., Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immunoreactivity in hippocampus of aging male rats (1999) Neuroendocrinology, 69 (2), pp. 129-137. , DOI 10.1159/000054411 
504 |a Hinterberger, M., Zehetmayer, S., Jungwirth, S., Huber, K., Krugluger, W., Leitha, T., Krampla, W., Fischer, P., High cortisol and low folate are the only routine blood tests predicting probable Alzheimer's disease after age 75-results of the Vienna Transdanube Aging Study (2013) J. Am. Geriatr. Soc., 61, pp. 648-651 
504 |a Magarinos, A.M., McEwen, B.S., Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress (2000) PNAS, 97, pp. 11056-11061 
504 |a Hantaz-Ambroise, D., Jacque, C., Ikhlef, A.A., Parmentier, C., Leclerc, P., Cambier, D., Zadigue, G., Rieger, F., Specific features of chronic astrocyte gliosis after experimental Central Nervous System (CNS) xenografting and in Wobbler neurological mutant CNS (2001) Differentiation, 69 (2-3), pp. 100-107 
504 |a Laage, S., Zobel, G., Jockusch, H., Astrocyte overgrowth in the brain stem and spinal cord of mice affected by spinal atrophy, wobbler (1988) Dev. Neurosci., 10, pp. 190-198 
504 |a Barbeito, L.H., Pehar, M., Cassina, P., Vargas, M.R., Peluffo, H., Viera, L., Estevez, A.G., Beckman, J.S., A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis (2004) Brain Research Reviews, 47 (1-3), pp. 263-274. , DOI 10.1016/j.brainresrev.2004.05.003, PII S0165017304000700, Chemical and Electrical Synapses 
504 |a Sica, R.E., Is amyotrophic lateral sclerosis a primary astrocytic disease? (2012) Med. Hypotheses, 79, pp. 819-822 
504 |a González Deniselle, M.C., Lavista-Llanos, S., Ferrini, M.G., Lima, A.E., Roldan, A.G., De Nicola, A.F., In vitro differences between astrocytes of control and wobbler mice spinal cord (1999) Neurochem. Res., 24, pp. 1535-1541 
504 |a Meyer, M., Gonzalez Deniselle, M.C., Garay, L.I., Monachelli, G.G., Lima, A., Roig, P., Guennoun, R., De Nicola, A.F., Stage dependent effects of progesterone on motoneurons and glial cells of wobbler mouse spinal cord degeneration (2010) Cell Mol. Neurobiol., 30, pp. 123-135 
504 |a Julien, J.P., ALS: Astrocytes move in as deadly neighbors (2007) Nat. Neurosci., 10, pp. 535-537 
504 |a Wilhelmsson, U., Faiz, M., De Pablo, Y., Sjoqvist, M., Andersson, D., Widestrand, A., Potokar, M., Pekny, M., Astrocytes negatively regulate neurogenesis through the Jagged1-mediated Notch pathway (2012) Stem Cells, 30, pp. 2320-2329 
504 |a Bridges, N., Slais, K., Sykova, E., The effects of chronic corticosterone on hippocampal astrocyte numbers: A comparison of male and female Wistar rats (2008) Acta Neurobiologiae Experimentalis, 68 (2), pp. 131-138. , http://www.nencki.gov.pl/pdf/an/vol68/bridges.pdf 
504 |a O'Callaghan, J.P., Brinton, R.E., McEwen, B.S., Glucocorticoids regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but do not affect its expression following brain injury (1991) J. Neurochem., 57, pp. 860-869 
504 |a Claessens, S.E., Belanoff, J.K., Kanatsou, S., Lucassen, P.J., Champagne, D.L., De Kloet, E.R., Acute effects of neonatal dexamethasone treatment on proliferation and astrocyte immunoreactivity in hippocampus and corpus callosum: Towards a rescue strategy (2012) Brain Res., 1482, pp. 1-12 
504 |a Allaman, I., Pellerin, L., Magistretti, P.J., Glucocorticoids modulate neurotransmitter-induced glycogen metabolism in cultured cortical astrocytes (2004) Journal of Neurochemistry, 88 (4), pp. 900-908 
504 |a Crossin, K.L., Tai, M.-H., Krushel, L.A., Mauro, V.P., Edelman, G.M., Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation (1997) Proceedings of the National Academy of Sciences of the United States of America, 94 (6), pp. 2687-2692. , DOI 10.1073/pnas.94.6.2687 
504 |a Yu, S., Yang, S., Holsboer, F., Sousa, N., Almeida, O.F., Glucocorticoid regulation of astrocytic fate and function (2011) PLoS One, 6, p. 22419 
504 |a Carrillo-De Sauvage, M.A., Maatouk, L., Arnoux, I., Pasco, M., Sanz Diez, A., Delahaye, M., Herrero, M.T., Vyas, S., Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation (2013) Cell Death Differ., 20, pp. 1546-1557 
504 |a Munhoz, C.D., Sorrells, S.F., Caso, J.R., Scavone, C., Sapolsky, R.M., Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner (2010) J. Neurosci., 30, pp. 13690-13698 
504 |a Busillo, J.M., Cidlowski, J.A., The five Rs of glucocorticoid action during inflammation: Ready, reinforce, repress, resolve, and restore (2013) Trends Endocrinol. Metab., 24, pp. 109-119 
504 |a Harpaz, I., Abutbul, S., Nemirovsky, A., Gal, R., Cohen, H., Monsonego, A., Chronic exposure to stress predisposes to higher autoimmune susceptibility in C57BL/6 mice: Glucocorticoids as a double-edged sword (2013) Eur. J. Immunol., 43, pp. 758-769 
504 |a Frank, M.G., Thompson, B.M., Watkins, L.R., Maier, S.F., Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses (2012) Brain Behav. Immun., 26, pp. 337-345 
504 |a Lannan, E.A., Galliher-Beckley, A.J., Scoltock, A.B., Cidlowski, J.A., Proinflammatory actions of glucocorticoids: Glucocorticoids and TNFα coregulate gene expression in vitro and in vivo (2012) Endocrinology, 153, pp. 3701-3712 
504 |a Busillo, J.M., Azzam, K.M., Cidlowski, J.A., Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome (2011) J. Biol. Chem., 286, pp. 38703-38713 
520 3 |a Mutant Wobbler mice are models for human amyotrophic lateral sclerosis (ALS). In addition to spinal cord degeneration, Wobbler mice show high levels of blood corticosterone, hyperactivity of the hypothalamic-pituitary-adrenal axis and abnormalities of the hippocampus. Hypersecretion of glucocorticoids increase hippocampus vulnerability, a process linked to an enriched content of glucocorticoid receptors (GR). Hence, we studied if a selective GR antagonist (CORT108297) with null affinity for other steroid receptors restored faulty hippocampus parameters of Wobbler mice. Three months old genotyped Wobbler mice received s.c. vehicle or CORT108297 during 4 days. We compared the response of doublecortin (DCX)+ neuroblasts in the subgranular layer of the dentate gyrus (DG), NeuN+ cells in the hilus of the DG, glial fibrillary acidic protein (GFAP)+ astrocytes and the phenotype of Iba1+ microglia in CORT108297-treated and vehicle-treated Wobblers. The number of DCX+ cells in Wobblers was lower than in control mice, whereas CORT108297 restored this parameter. After CORT108297 treatment, Wobblers showed diminished astrogliosis, and changed the phenotype of Iba1+ microglia from an activated to a quiescent form. These changes occurred without alterations in the hypercorticosteronemia or the number of NeuN+ cells of the Wobblers. In a separate experiment employing control NFR/NFR mice, treatment with corticosterone for 5 days reduced DCX+ neuroblasts and induced astrocyte hypertrophy, whereas treatment with CORT108297 antagonized these effects. Normalization of neuronal progenitors, astrogliosis and microglial phenotype by CORT108297 indicates the usefulness of this antagonist to normalize hippocampus parameters of Wobbler mice. Thus, CORT108297 opens new therapeutic options for the brain abnormalities of ALS patients and hyperadrenocorticisms. © 2014 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, Ubacyt 20020100100089 
536 |a Detalles de la financiación: Fundación Alberto J. Roemmers 
536 |a Detalles de la financiación: Fundación Florencio Fiorini 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP-112201201-00016 
536 |a Detalles de la financiación: Ministry of Science and Technology, PICT 2012-0009 
536 |a Detalles de la financiación: This work was supported by grants from the Ministry of Science and Technology ( PICT 2012-0009 ) CONICET ( PIP-112201201-00016 ), the University of Buenos Aires ( Ubacyt 20020100100089 ) and Fundación Roemmers . Dr. Maria Meyer was supported by Fundación Bunge & Born and Fundación Florencio Fiorini. These findings sources had no role in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. 
593 |a Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, CONICET, Obligado 2490, 1428 Buenos Aires, Argentina 
593 |a Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina 
593 |a Corcept Therapeutics, 149 Commonwealth Drive, Menlo Park, CA 94025, United States 
593 |a LACDR/LUMC, Leiden University, Einstein weg 55, 2333 CC Leiden, Netherlands 
690 1 0 |a ASTROGLIOSIS 
690 1 0 |a CORT108297 
690 1 0 |a CORTICOSTERONE 
690 1 0 |a GLUCOCORTICOID RECEPTOR ANTAGONIST 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a MICROGLIA 
690 1 0 |a NEUROGENESIS 
690 1 0 |a WOBBLER MICE 
690 1 0 |a BINDING PROTEIN 
690 1 0 |a BRAIN PROTEIN 
690 1 0 |a CORT 108297 
690 1 0 |a CORT108297 
690 1 0 |a CORTICOSTERONE 
690 1 0 |a DOUBLECORTIN 
690 1 0 |a GLIAL FIBRILLARY ACIDIC PROTEIN 
690 1 0 |a GLUCOCORTICOID RECEPTOR 
690 1 0 |a IONIZED CALCIUM BINDING ADAPTER MOLECULE 1 
690 1 0 |a NEURON SPECIFIC NUCLEAR PROTEIN 
690 1 0 |a RECOMBINANT HORMONE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ANTIINFLAMMATORY AGENT 
690 1 0 |a CORT 108297 
690 1 0 |a CORTICOSTERONE 
690 1 0 |a DOUBLECORTIN PROTEIN 
690 1 0 |a FUSED HETEROCYCLIC RINGS 
690 1 0 |a GLIAL FIBRILLARY ACIDIC PROTEIN 
690 1 0 |a GLUCOCORTICOID RECEPTOR 
690 1 0 |a HETEROCYCLIC COMPOUND 
690 1 0 |a MICROTUBULE ASSOCIATED PROTEIN 
690 1 0 |a NERVE PROTEIN 
690 1 0 |a NEUN PROTEIN, MOUSE 
690 1 0 |a NEUROPEPTIDE 
690 1 0 |a NUCLEAR PROTEIN 
690 1 0 |a ADRENAL CORTEX DISEASE 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ARTICLE 
690 1 0 |a ASTROCYTE 
690 1 0 |a ASTROCYTE HYPERTROPHY 
690 1 0 |a ASTROCYTOSIS 
690 1 0 |a CELL ACTIVITY 
690 1 0 |a CELL COUNT 
690 1 0 |a CELL FUNCTION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CORTICOSTERONE BLOOD LEVEL 
690 1 0 |a DENTATE GYRUS 
690 1 0 |a DOUBLECORTIN+ NEUROBLAST 
690 1 0 |a DRUG BRAIN LEVEL 
690 1 0 |a DRUG EFFECT 
690 1 0 |a DRUG MECHANISM 
690 1 0 |a DRUG RECEPTOR BINDING 
690 1 0 |a DRUG RESPONSE 
690 1 0 |a GLIAL FIBRILLARY ACIDIC PROTEIN+ASTROCYTE 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a HYPERCORTICOSTERONEMIA 
690 1 0 |a HYPERTROPHY 
690 1 0 |a IONIZED CALCIUM BINDING ADAPTER MOLECULE 1+MICROGLIA 
690 1 0 |a MICROGLIA 
690 1 0 |a MOUSE 
690 1 0 |a NERVOUS SYSTEM PARAMETERS 
690 1 0 |a NEUROBLAST 
690 1 0 |a NEURON SPECIFIC NUCLEAR PROTEIN+ CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a PHENOTYPE 
690 1 0 |a TREATMENT DURATION 
690 1 0 |a ANIMAL 
690 1 0 |a ANTAGONISTS AND INHIBITORS 
690 1 0 |a CELL CULTURE 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a CYTOLOGY 
690 1 0 |a DISEASE MODEL 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a ENZYME IMMUNOASSAY 
690 1 0 |a FEMALE 
690 1 0 |a FLUORESCENT ANTIBODY TECHNIQUE 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a HUMAN 
690 1 0 |a METABOLISM 
690 1 0 |a MOUSE MUTANT 
690 1 0 |a NERVE CELL 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a WESTERN BLOTTING 
690 1 0 |a ANIMALS 
690 1 0 |a ANTI-INFLAMMATORY AGENTS 
690 1 0 |a ASTROCYTES 
690 1 0 |a AZA COMPOUNDS 
690 1 0 |a BLOTTING, WESTERN 
690 1 0 |a CELLS, CULTURED 
690 1 0 |a CORTICOSTERONE 
690 1 0 |a DISEASE MODELS, ANIMAL 
690 1 0 |a FEMALE 
690 1 0 |a FLUORESCENT ANTIBODY TECHNIQUE 
690 1 0 |a GLIAL FIBRILLARY ACIDIC PROTEIN 
690 1 0 |a HETEROCYCLIC COMPOUNDS WITH 4 OR MORE RINGS 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a HUMANS 
690 1 0 |a IMMUNOENZYME TECHNIQUES 
690 1 0 |a MICE 
690 1 0 |a MICE, NEUROLOGIC MUTANTS 
690 1 0 |a MICROGLIA 
690 1 0 |a MICROTUBULE-ASSOCIATED PROTEINS 
690 1 0 |a NERVE TISSUE PROTEINS 
690 1 0 |a NEURONS 
690 1 0 |a NEUROPEPTIDES 
690 1 0 |a NUCLEAR PROTEINS 
690 1 0 |a RECEPTORS, GLUCOCORTICOID 
653 0 0 |a cort 108297 
700 1 |a Gonzalez Deniselle, M.C. 
700 1 |a Hunt, H. 
700 1 |a Kloet, E.R.D. 
700 1 |a De Nicola, A.F. 
773 0 |d Elsevier Ltd, 2014  |g v. 143  |h pp. 40-48  |p J. Steroid Biochem. Mol. Biol.  |x 09600760  |w (AR-BaUEN)CENRE-5799  |t Journal of Steroid Biochemistry and Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896124043&doi=10.1016%2fj.jsbmb.2014.02.007&partnerID=40&md5=a4e7c0a454cf0301c6ed545e24eb9be2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jsbmb.2014.02.007  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09600760_v143_n_p40_Meyer  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09600760_v143_n_p40_Meyer  |y Registro en la Biblioteca Digital 
961 |a paper_09600760_v143_n_p40_Meyer  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85011