Photosensitized oxidation of sulfides: Discriminating between the singlet-oxygen mechanism and electron transfer involving superoxide anion or molecular oxygen

The oxidation of diethyl and diphenyl sulfide photosensitized by dicyanoanthracene (DCA), N-methylquinolinium tetrafluoroborate (NMQ +), and triphenylpyrylium tetrafluoroborate (TPP+) has been explored by steady-state and laser flash photolysis studies in acetonitrile, methanol, and 1,2-dichloroetha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonesi, S.M
Otros Autores: Manet, I., Freccero, M., Fagnoni, M., Albini, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16362caa a22019937a 4500
001 PAPER-21808
003 AR-BaUEN
005 20230518205318.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33745456218 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CEUJE 
100 1 |a Bonesi, S.M. 
245 1 0 |a Photosensitized oxidation of sulfides: Discriminating between the singlet-oxygen mechanism and electron transfer involving superoxide anion or molecular oxygen 
260 |c 2006 
270 1 0 |m Albini, A.; Dept. Org. Chem., University of Pavia, v. Taramelli 10, 27100 Pavia, Italy; email: angelo.albini@unipv.it 
506 |2 openaire  |e Política editorial 
504 |a (1994) Synthesis of Sulfones, Sulfoxides and Cyclic Sulfides, p. 195. , Eds.: J. Drabowicz, P. Kielbasinski, M. Mikolajczyk, M. In S. Patai, Z. Rappoport, Wiley, Chichester 
504 |a Mata, E.G., (1996) Phosphorus Sulfur Relat. Elem., 117, p. 231 
504 |a Mashkina, A.V., (1990) Catal. Rev. Sci. Eng., 32, p. 105 
504 |a Foote, C.S., Peters, J.W., (1971) J. Am. Chem. Soc., 93, p. 3795 
504 |a Gu, C.-L., Foote, C.S., Kacher, M.L., (1981) J. Am. Chem. Soc., p. 103 
504 |a Liang, J.J., Gu, C.-L., Kacher, M.L., Foote, C.S., (1983) J. Am. Chem. Soc., 105, p. 4717 
504 |a Clennan, E.L., (2001) Acc. Chem. Res., 34, p. 875 
504 |a Clennan, E.L., (1996) Sulfur Rep., 19, p. 171 
504 |a Clennan, E.L., (1995) Adv. Oxygenated Processes, 4, p. 49 
504 |a Ando, W., Takada, T., (1985) Singlet Oxygen, 3, p. 1. , (Ed.: A. A. Frimer), CRC, Boca Raton 
504 |a Baciocchi, E., Crescenzi, C., Lanzalunga, O., (1997) Tetrahedron, 53, p. 4469 
504 |a Eriksen, J., Foote, C.S., Parker, T.L., (1977) J. Am. Chem. Soc., 99, p. 6455 
504 |a Soggiu, N., Cardy, H., Habib, J.L., Soumillon, J.P., (1999) J. Photochem. Photobiol. A, 124, p. 1 
504 |a Baciocchi, E., Del Giacco, T., Elisei, F., Gerini, M.F., Guerra, M., Lapi, A., Liberali, P., (2003) J. Am. Chem. Soc., 125, p. 16444 
504 |a Che, Y., Ma, W., Ren, Y., Chen, C., Zhang, X., Zhao, J., Zang, L., (2005) J. Phys. Chem. B, 109, p. 8270 
504 |a Lacombe, S., Cardy, H., Simon, M., Khoukh, A., Soumillon, J.P., Ayadim, M., (2002) Photochem. Photobiol. Sci., 1, p. 347 
504 |a Pigot, T., Arbitre, T., Hervé, M., Lacombe, S., (2004) Tetrahedron Lett., 45, p. 4047 
504 |a Latour, V., Pigot, T., Simon, M., Cardy, H., Lacombe, S., (2005) Photochem. Photobiol. Sci., 4, p. 221 
504 |a Bobrowski, K., Marciniak, B., Hug, G.L., (1994) J. Photochem. Photobiol. A, 81, p. 159 
504 |a Inbar, S., Linschitz, H., Cohen, S.G., (1982) J. Am. Chem. Soc., 104, p. 1679 
504 |a Ronfard-Haret, J.C., Bensasson, R.V., Gramain, J.C., (1983) Chem. Phys. Lett., 96, p. 31 
504 |a Adam, W., Arguello, J.E., Penenory, A.B., (1998) J. Org. Chem., 63, p. 3905 
504 |a Bosch, E., Kochi, J.K., (1995) J. Org. Chem., 60, p. 3172 
504 |a Iliev, V., Tomova, D., (2002) Catal. Commun., 3, p. 287 
504 |a Alvaro, M., Carbonell, E., Garcia, H., (2004) Appl. Catal. B, 51, p. 195 
504 |a Dobrowolski, D.C., Ogilby, P.R., Foote, C.S., (1983) J. Phys. Chem., 87, p. 2261 
504 |a Davidson, R.S., Pratt, J.E., (1984) Tetrahedron, 40, p. 999 
504 |a Manring, L.E., Gu, C.L., Foote, C.S., (1983) J. Phys. Chem., 87, p. 40 
504 |a Darmanyan, A.P., (1984) Chem. Phys. Lett., 110, p. 89 
504 |a Abraham, W., Glänzel, A., Stösser, R., Grummt, U.W., Köppel, H., (1990) J. Photochem. Photobiol. A, 51, p. 359 
504 |a Clennan, E.L., Greer, A., (1996) J. Org. Chem., 67, p. 4793 
504 |a Bonesi, S.M., Albini, A., (2000) J. Org. Chem., 65, p. 4532 
504 |a Bonesi, S.M., Fagnoni, M., Monti, S., Albini, A., (2004) Photochem. Photobiol. Sci., 3, p. 489 
504 |a Clennan, E.L., Zhang, H., (1995) J. Am. Chem. Soc., 117, p. 4218 
504 |a Nahm, K., Foote, C.S., (1989) J. Am. Chem. Soc., 111, p. 1909 
504 |a Akaba, R., Sakuragi, H., Tokumaru, K., (1991) J. Chem. Soc. Perkin Trans. 2, p. 291 
504 |a Miranda, M.A., Garcia, H., (1994) Chem. Rev., 94, p. 1063 
504 |a note; Saeva, F.D., Olin, G.R., (1980) J. Am. Chem. Soc., 102, p. 299 
504 |a Breslin, D.T., Fox, M.A., (1993) J. Am. Chem. Soc., 115, p. 11716 
504 |a Dockery, K.P., Dinnocenzo, J.P., Farid, S., Goodman, J.L., Gould, I.R., Todd, W.P., (1997) J. Am. Chem. Soc., 119, p. 1876 
504 |a Yoon, U.C., Quillen, S.L., Mariano, P.S., Swanson, R., Stavinoha, J.L., Bay, E., (1983) J. Am. Chem. Soc., 105, p. 1204 
504 |a note; Rehm, D., Weller, A., (1970) Isr. J. Chem., 8, p. 259 
504 |a Cozzens, R.F., Gover, T.A., (1970) J. Phys. Chem., 74, p. 3003 
504 |a Guirado, G., Fleming, C.N., Lingenfelter, T.G., Williams, M.L., Zuilhof, H., Dinnocenzo, J.P., (2004) J. Am. Chem. Soc., 126, p. 14087 
504 |a note; Bonifacic, M., Möckel, H., Bahnemann, D., Asmus, A.D., (1975) J. Chem. Soc. Perkin Trans. 2, p. 675 
504 |a Bobrowski, K., Hug, G.L., Marciniak, B., Miller, B., Schöneich, C., (1997) J. Am. Chem. Soc., 119, p. 8000 
504 |a Mahling, K.S., Asmus, K.D., Glass, R.S., Hojjatie, M., Wilson, G.S., (1987) J. Org. Chem., 52, p. 3717 
504 |a Moham, H., Mittal, J.P., (1992) J. Chem. Soc. Perkin Trans. 2, p. 207 
504 |a Merényi, G., Lind, J., Engman, L., (1996) J. Phys. Chem., 100, p. 8875 
504 |a Engman, L., Lind, J., Merényi, G., (1994) J. Phys. Chem., 98, p. 3174 
504 |a Yokoi, H., Hatta, A., Ishiguro, K., Sawaki, Y., (1998) J. Am. Chem. Soc., 120, p. 12728 
504 |a Gould, I.R., Ege, D., Moser, J.E., Farid, S., (1990) J. Am. Chem. Soc., 112, p. 4290 
504 |a Gould, I.R., Boiani, J.A., Gaillard, E.B., Goodman, J.L., Farid, S., (2003) J. Phys. Chem. A, 107, p. 3515 
504 |a Jayanthi, S.S., Ramamurthy, P., (1997) J. Phys. Chem. A, 101, p. 2016 
504 |a Brachi, B., Bietti, M., Ercolani, G., Izquierdo, M.A., Miranda, M.A., Stella, L., (2004) J. Org. Chem., 69, p. 8874 
504 |a note; Huang, M.L., Rauk, A., (2004) J. Phys. Chem. A, 108, p. 6222 
504 |a Wilkinson, F., Helman, W.P., Ross, A.B., (1995) J. Phys. Chem. Ref. Data, p. 663 
504 |a Sikorska, E., Khmelinskii, I., Williams, S.L., Worall, D.R., Herance, I.R., Bourdelande, J.L., Koput, J., Sikorski, M., (2004) J. Mol. Struct., 697, p. 199 
504 |a Egland, R.D., Marken, F., Southern, E.M., (2002) Anal. Chem., 74, p. 1590 
504 |a (1988) Photoinduced Electron Transfer, p. 475. , Eds.: M. A. Fox, M. Chanon, Part A, Elsevier, Amsterdam 
504 |a Maurette, M.T., Oliveros, E., Infelta, P.P., Ramsteiner, K., Braun, A.M., (1983) Helv. Chim. Acta, 66, p. 722 
504 |a Manring, L.E., Kramer, M.K., Foote, C.S., (1984) Tetrahedron Lett., 25, p. 2523 
504 |a Kacher, M.L., Foote, C.S., (1979) Photochem. Photobiol., 29, p. 765 
504 |a Miller, S.E., Lukas, A.S., Marsh, E., Bushard, P., Wasielewski, M.R., (2000) J. Am. Chem. Soc., 122, p. 7802 
504 |a Fukuzumi, S., Shimoosako, K., Suenobu, T., Watanabe, Y., (2003) J. Am. Chem. Soc., 125, p. 9074 
504 |a note; Gould, I.R., Boiani, J.A., Gaillard, E.R., Goodman, J.L., Farid, S., (2003) J. Phys. Chem. A, 107, p. 3515 
504 |a Takeda, I., Misawa, H., Sakuragi, H., Tokumaru, K., (1989) Bull. Chem. Soc. Jpn., 62, p. 2213 
504 |a Boilet, L., Buntinx, G., Lefumeux, C., Poizat, O., (2004) J. Photochem. Photobiol. A, 163, p. 529 
504 |a Rasmusson, M., kesson, E., Eberson, L., Sundström, V., (2001) J. Phys. Chem. B, 105, p. 2027 
504 |a Akaba, R., Kamata, M., Koike, A., Mogi, K., Kuriyama, Y., Sakuragi, H., (1997) J. Photopolym. Sci. Technol. J. Phys Org. Chem., 10, p. 861 
504 |a Bookman, T.M., Perrier, S., Kochi, J.K., (1993) J. Chem. Soc. Perkin Trans. 2, p. 595 
504 |a note; Akasaka, T., Ando, W., (1985) Tetrahedron Lett., 26, p. 5049 
504 |a Bonifaèic, M., Hug, G.L., Schöneich, C., (2000) J. Phys. Chem. A, 104, p. 1240 
504 |a Miller, B.L., Williams, T.D., Schöneich, C., (1996) J. Am. Chem. Soc., 118, p. 11014 
504 |a Afanas'ev, I.B., Kuprianova, N.S., (1983) Int. J. Chem. Kinet., 15, p. 1057 
504 |a Sawyer, D.T., Gibian, M.S., (1979) Tetrahedron, 35, p. 1471 
504 |a Chin, D.H., Chiericato, G., Nanni, E.J., Sawyer, D.T., (1982) J. Am. Chem. Soc., 104, p. 1296 
504 |a Ribo, J.M., Farrera, J.A., Claret, J., (1990) Experientia, 46, p. 1057 
504 |a Bielski, B.J.H., (1978) Photochem. Photobiol., 28, p. 645 
504 |a Che, Y., Tsushima, M., Matsumoto, F., Okajima, T., Tokuda, T., Ohsaka, T., (1996) J. Phys. Chem., 100, p. 20134 
504 |a note; Fukuzumi, S., Shimoosako, K., Suenobu, T., Watanabe, Y., (2003) J. Am. Chem. Soc., 125, p. 9074 
504 |a Schönheich, C., Aced, A., Asmus, A., (1991) J. Am. Chem. Soc., 113, p. 375 
504 |a Arzecha, K.D., Demuth, M., Görner, H., (1997) J. Chem. Soc. Faraday Trans., 93, p. 1523 
504 |a note; Schäfer, K., Bonifaciè, M., Bahnemann, D., Asmus, K.D., (1978) J. Phys. Chem., 82, p. 2727 
504 |a Schöneich, C., Aced, A., Asmus, K.D., (1993) J. Am. Chem. Soc., 115, p. 11376 
504 |a Miller, B.L., Kuczera, K., Schöneich, C., (1998) J. Am. Chem. Soc., 120, p. 3345 
504 |a Schönheich, C., Pogocki, D., Wisniowski, P., Hug, G.L., Bobrowski, K., (2000) J. Am. Chem. Soc., 122, p. 10224 
504 |a Hug, G.L., Marciniak, B., Bobrowski, K., (1996) J. Photochem. Photobiol. A, 95, p. 88 
504 |a Bonifacic, M., Hug, G.L., Schöneich, C., (2000) J. Phys. Chem. A, 104, p. 1240 
504 |a Riley, D.P., Correa, P.E., (1986) J. Chem. Soc. Chem. Commun., p. 1097 
504 |a Bosch, E., Kochi, J.K., (1995) J. Org. Chem., 60, p. 3172 
504 |a Riley, D.P., Correa, P.E., (1985) J. Org. Chem., 50, p. 1787 
504 |a Zhou, W., Clennan, E.L., (1999) Chem. Commun., p. 2361 
504 |a Clennan, E.L., Zhou, W., Chan, J., (2002) J. Org. Chem., 67, p. 9368 
504 |a Jin, F., Leitich, J., Von Sonntag, C., (1993) J. Chem. Soc. Perkin Trans. 2, p. 1583 
504 |a Fang, X., Jin, F., Jin, H., Von Sonntag, C., (1998) J. Chem. Soc. Perkin Trans. 2, p. 259 
504 |a note; Okuno, Y., (1997) Chem. Eur. J., 3, p. 212 
504 |a Kishore, K., Anklam, E., Aced, A., Asmus, K.D., (2000) J. Phys. Chem. A, 104, p. 9646. , note 
504 |a Miyashi, T., Kamata, M., Mukai, T., (1987) J. Am. Chem. Soc., 109, p. 2780 
504 |a Mizuno, K., Kamiyama, N., Ichinose, N., Otsuji, Y., (1985) Tetrahedron, 41, p. 5945 
504 |a Gollnick, K., Xiao, X.L., Paulmann, U., (1990) J. Org. Chem., 55, p. 5945 
504 |a Gollnick, K., Paulmann, U., (1990) J. Org. Chem., 55, p. 5954 
504 |a Schuchmann, N., Bothe, E., Von Sonntag, J., Von Sonntag, C., (1998) J. Chem. Soc. Perkin Trans. 2, p. 791 
504 |a Jensen, F., Greer, A., Clennan, E.L., (1998) J. Am. Chem. Soc., 120, p. 4439 
504 |a McKee, M.L., (1998) J. Am. Chem. Soc., 120, p. 3963 
504 |a note; note; Glass, B.R., (1999) Top. Curr. Chem., 205, p. 1 
504 |a Baumstark, A.L., (1986) Bioorg. Chem., 15, p. 326 
504 |a Beck-Speier, L., Luippold, G., Maier, K.L., (1988) FEBS Lett., 227, p. 1 
504 |a Vogt, W., (1995) Free Radical Biol. Med., 18, p. 93 
504 |a Chu, J.W., Trout, B.L., (2004) J. Am. Chem. Soc., 126, p. 900 
504 |a Das, A.K., (2004) Coord. Chem. Rev., 248, p. 81 
504 |a Peñéñory, A.B., Arguello, J.E., Puiatti, M., (2005) Eur. J. Org. Chem., 10, p. 114 
504 |a Baciocchi, E., Lanzalunga, O., Malandrucco, S., Ioele, M., Steenken, S., (1996) J. Am. Chem. Soc., 118, p. 8973 
504 |a Bordwell, F.G., Boutan, P., (1957) J. Am. Chem. Soc., 79, p. 717 
504 |a Rio, G., Sillion, B., (1961) Bull. Soc. Chim. Fr., p. 831 
504 |a Donovan, P.F., Conley, D.A., (1966) Chem. Eng. Data, 11, p. 614 
504 |a Eriksen, J., Foote, C.S., (1980) J. Am. Chem. Soc., 102, p. 6083 
504 |a Monti, S., Camaioni, N., Bortolus, P., (1991) Photochem. Photobiol., 54, p. 577 
504 |a Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Pople, J.A., (2003) Gaussian03, Revision B.2, , Gaussian, Inc., Pittsburgh, PA 
504 |a Arnaud, R., Juvin, P., Valle'e, Y., (1999) J. Org. Chem., 64, p. 8880 
504 |a Rutting, P.J., Burgers, P.C., Francis, J.T., Terlouw, J.K., (1996) J. Phys. Chem., 100, p. 9694 
504 |a Barone, V., Cossi, M., Tomasi, J., (1997) J. Chem. Phys., 107, p. 3210 
520 3 |a The oxidation of diethyl and diphenyl sulfide photosensitized by dicyanoanthracene (DCA), N-methylquinolinium tetrafluoroborate (NMQ +), and triphenylpyrylium tetrafluoroborate (TPP+) has been explored by steady-state and laser flash photolysis studies in acetonitrile, methanol, and 1,2-dichloroethane. In the Et2S/DCA system sulfide-enhanced intersystem crossing leads to generation of 1O2, which eventually gives the sulfoxide via a persulfoxide ; this mechanism plays no role with Ph2S, though enhanced formation of 3DCA has been demonstrated. In all other cases an electron-transfer (ET) mechanism is involved. Electron-transfer sulfoxidation occurs with efficiency essentially independent of the sulfide structure, is subject to quenching by benzoquinone, and does not lead to Ph2SO cooxidation. Formation of the radical cations R2S.+ has been assessed by flash photolysis (medium-dependent yield, dichloroethane ≫ CH3CN > CH3OH) and confirmed by quenching with 1,4-dimethoxybenzene. Electron-transfer oxidations occur both when the superoxide anion is generated by the reduced sensitizer (DCA.-, NMQ.) and when this is not the case (TPP.). Although it is possible that different mechanisms op erate with different ET sensitizers, a plausible unitary mechanism can be proposed. This considers that reaction between R2S.+ and O2.- mainly involves back electron transfer, whereas sulfoxidation results primarily from the reaction of the sulfide radical cation with molecular oxygen. Calculations indeed show that the initially formed fleeting complex RS2 +⋯O-O. adds to a sulfide molecule and gives strongly stabilized R2S-O.-+O-SR2 via an accessible transition state. This intermediate gives the sulfoxide, probably via a radical cation chain path. This mechanism explains the larger scope of ET sulfoxidation with respect to the singlet-oxygen process. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.  |l eng 
593 |a CHIDECAR-CONICET, Dep. Quim. Org., Ciudad Universidaria, 1428 Buenos Aires, Argentina 
593 |a Dept. Org. Chem., University of Pavia, v. Taramelli 10, 27100 Pavia, Italy 
593 |a ISOF-CNR, via P. Gobetti 101, 40129 Bologna, Italy 
690 1 0 |a ELECTRON TRANSFER OXIDATION 
690 1 0 |a PHOTOCHEMISTRY REACTION MECHANISMS 
690 1 0 |a SULFIDES 
690 1 0 |a ACETONITRILE 
690 1 0 |a ELECTRON TRANSITIONS 
690 1 0 |a NEGATIVE IONS 
690 1 0 |a PHOTOLYSIS 
690 1 0 |a PHOTOSENSITIVITY 
690 1 0 |a QUENCHING 
690 1 0 |a ELECTRON TRANSFER OXIDATION 
690 1 0 |a PHOTOCHEMISTRY REACTION MECHANISMS 
690 1 0 |a SULFIDES 
690 1 0 |a SULFOXIDATION 
690 1 0 |a SULFUR COMPOUNDS 
700 1 |a Manet, I. 
700 1 |a Freccero, M. 
700 1 |a Fagnoni, M. 
700 1 |a Albini, A. 
773 0 |d 2006  |g v. 12  |h pp. 4844-4857  |k n. 18  |p Chem. Eur. J.  |x 09476539  |w (AR-BaUEN)CENRE-83  |t Chemistry - A European Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745456218&doi=10.1002%2fchem.200501144&partnerID=40&md5=b1ac6a80a0609f2b7e239605589198bb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/chem.200501144  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09476539_v12_n18_p4844_Bonesi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09476539_v12_n18_p4844_Bonesi  |y Registro en la Biblioteca Digital 
961 |a paper_09476539_v12_n18_p4844_Bonesi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 82761