Dynamical aspects of isomerization and melting transitions in [H2O]8

We present a transition path sampling study of the dynamics of isomerization between the S4 and the D2d cubic structures of the water octamer. The reaction mechanism involves a transition state characterized by a distorted face exhibiting a diagonal hydrogen bond. Analysis of an ensemble of trajecto...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Laria, D.
Otros Autores: Rodriguez, J., Dellago, C., Chandler, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07936caa a22010577a 4500
001 PAPER-20661
003 AR-BaUEN
005 20230518205205.0
008 190411s2001 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0035967386 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Laria, D. 
245 1 0 |a Dynamical aspects of isomerization and melting transitions in [H2O]8 
260 |c 2001 
270 1 0 |m Chandler, D.; Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720, United States 
506 |2 openaire  |e Política editorial 
504 |a Jellinek, J., Beck, T.L., Berry, R.S., (1986) J. Chem. Phys., 84, p. 2783 
504 |a Beck, T.L., Jellinek, J., Berry, R.S., (1987) J. Chem. Phys., 87, p. 545 
504 |a Beck, T.L., Berry, R.S., (1988) J. Chem. Phys., 88, p. 3910 
504 |a Berry, R.S., Beck, T.L., Davis, H.L., Jellinek, J., (1988) Adv. Chem. Phys., 70 B, p. 75 
504 |a Berry, R.S., Wales, D.J., (1989) Phys. Rev. Lett., 63, p. 1156 
504 |a Berry, R.S., Wales, D.J., (1990) J. Chem. Phys., 92, p. 4308 
504 |a Berry, R.S., (1990) J. Chem. Soc., Faraday Trans., 86, p. 2343 
504 |a Labastie, P., Whetten, R.L., (1990) Phys. Rev. Lett., 65, p. 1567 
504 |a Wales, D.J., Berry, R.S., (1994) Phys. Rev. Lett., 73, p. 2875 
504 |a Wales, D.J., Doye, J.P.K., (1995) J. Chem. Phys, 103, p. 3061 
504 |a Bösiger, J., Leutwyler, S., (1987) Phys. Rev. Lett., 59, p. 1895 
504 |a Eichenauer, D.D., Le Roy, R.J., (1986) Phys. Rev. Lett., 57, p. 2920 
504 |a Eichenauer, D., Le Roy, R.J., (1988) J. Chem. Phys., 88, p. 2898 
504 |a Bartell, L.S., Dulles, F.J., Chuko, B., (1991) J. Phys. Chem., 95, p. 6481 
504 |a Bartell, L.S., Xu, S., (1991) J. Phys. Chem., 95, p. 8939 
504 |a Bartell, L.S., (1992) J. Phys. Chem., 96, p. 108 
504 |a Fried, L.E., Mukamel, S., (1991) Phys. Rev. Lett., 66, p. 2340 
504 |a Wales, D.J., Ohmine, I., (1993) J. Chem. Phys., 98, p. 7245 
504 |a Buck, U., Ettisher, I., Melzer, M., Buch, V., Sadlej, J., (1998) Phys. Rev. Lett., 80, p. 2578 
504 |a Gruenloh, C.J., Camey, J.R., Arrington, C.A., Zwier, T.S., Fredericks, S.Y., Jordan, K.D., (1997) Science, 276, p. 1679 
504 |a Liu, K., Brown, M.G., Carter, C., Saykally, R.J., Gregory, J.K., Clary, D.C., (1996) Nature (London), 381, p. 501 
504 |a Gregory, J.K., Clary, D.C., Lui, K., Brown, M.G., Saykally, R.J., (1997) Science, 75, p. 814 
504 |a Liu, K., Brown, M.G., Cruzan, J.D., Saykally, R.J., (1997) J. Phys. Chem. A, 101, p. 9022 
504 |a Liu, K., Brown, M.G., Saykally, R.J., (1997) J. Phys. Chem. A, 101, p. 9011 
504 |a Liu, K., Brown, M.G., Saykally, R.J., (1997) J. Phys. Chem. A, 101, p. 8995 
504 |a Rodriguez, J., Laria, D., Marceca, E.J., Estrin, D.A., (1999) J. Chem. Phys., 110, p. 9039 
504 |a Tsai, C.J., Jordan, K.D., (1991) J. Chem. Phys., 95, p. 3850 
504 |a Tsai, C.J., Jordan, K.D., (1993) J. Phys. Chem., 97, p. 7245 
504 |a Tsai, C.J., Jordan, K.D., (1993) J. Phys. Chem., 97, p. 5208 
504 |a Wales, D.J., Ohmine, I., (1993) J. Chem. Phys., 98, p. 7257 
504 |a Doye, J.P.K., Wales, D.J., (1995) J. Chem. Phys., 102, p. 9673 
504 |a Baba, A., Hirata, Y., Saito, S., Ohmine, I., Wales, D.J., (1997) J. Chem. Phys., 106, p. 3329 
504 |a Wales, D.J., Walsh, T.R., (1997) J. Chem. Phys., 106, p. 7193 
504 |a Vegiri, A., Farantos, S.C., (1993) J. Chem. Phys., 98, p. 4059 
504 |a Masella, M., Flament, J.-P., (1999) J. Chem. Phys., 111, p. 5081 
504 |a Csajka, F.S., Chandler, D., (1998) J. Chem. Phys., 109, p. 1125 
504 |a Dellago, C., Bolhuis, P.G., Csajka, F., Chandler, D., (1998) J. Chem. Phys., 108, p. 1964 
504 |a Dellago, C., Bolhuis, P.G., Chandler, D., (1998) J. Chem. Phys., 108, p. 9263 
504 |a Bolhuis, P.G., Dellago, C., Chandler, D., (1998) Faraday Discuss. Chem. Soc., 110, p. 421 
504 |a Dellago, C., Bolhuis, P.G., Chandler, D., (1999) J. Chem. Phys., 110, p. 6617 
504 |a Geissler, P.L., Dellago, C., Chandler, D., (1999) J. Phys. Chem. B, 103, p. 3706 
504 |a Geissler, P.L., Dellago, C., Chandler, D., (1999) Phys. Chem. Chem. Phys., 7, p. 1317 
504 |a Ciccotti, G., Ferrario, M., (1998) Classical and Quantum Dynamics in Condensed Phase Simulations, , Berne, B. J., Ciccotti, G., Coker, D. F., Eds.; World Scientific: Singapore, Chapter 7 
504 |a Allen, M., Tildesley, D.J., (1987) Computer Simulations of Liquids, , Clarendon: Oxford, UK 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., (1983) J. Chem. Phys., 79, p. 926 
504 |a Andersen, H.C., (1983) J. Comput. Phys., 52, p. 24 
504 |a Kim, J., Mhin, B.J., Lee, S.J., Kim, K.S., (1994) Chem. Phys. Lett., 219, p. 243 
504 |a Estrin, D.A., Paglieri, L., Coroiigiu, G., Clementi, E., (1996) J. Phys. Chem., 100, p. 8701 
504 |a The TIP4P model fails to reproduce this trend; however, for the present purposes this discrepancy is unimportant 
520 3 |a We present a transition path sampling study of the dynamics of isomerization between the S4 and the D2d cubic structures of the water octamer. The reaction mechanism involves a transition state characterized by a distorted face exhibiting a diagonal hydrogen bond. Analysis of an ensemble of trajectories shows that the isomerization requires concerted flips of double proton donor molecules and the interchange between dangling and bonding hydrogens in single proton donor molecules. At a total energy E = -60.5 kcal/mol, we calculated that the characteristic time for the interconversion is of the order of milliseconds. We have also investigated pathways for the melting transition at temperatures T ≈ 200 K. We find that the barrier for solid-liquid interconversions never exceeds 2kBT measured from the liquid side. Such transitions between liquid and solid do not involve the passage over an energetic barrier; instead, the stabilization of the liquid phase is the result of a cancellation between energetic and entropic contributions. © 2001 American Chemical Society.  |l eng 
593 |a Unidad Actividad Química, Comisión Nacional de Energia Atómica, Avenida Libertador 8250, 1429 Capital Federal, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química-Física e INQUIMAE, Pabellón II, 1428, Capital Federal, Argentina 
593 |a Department of Chemistry, University of Rochester, Rochester, NY 14627, United States 
593 |a Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720, United States 
690 1 0 |a MELTING TRANSITIONS 
690 1 0 |a ENTROPY 
690 1 0 |a HYDROGEN BONDS 
690 1 0 |a MELTING 
690 1 0 |a MOLECULES 
690 1 0 |a PROTONS 
690 1 0 |a REACTION KINETICS 
690 1 0 |a THERMAL EFFECTS 
690 1 0 |a WATER 
690 1 0 |a ISOMERIZATION 
700 1 |a Rodriguez, J. 
700 1 |a Dellago, C. 
700 1 |a Chandler, D. 
773 0 |d 2001  |g v. 105  |h pp. 2646-2651  |k n. 12  |p J. Phys. Chem. A  |x 10895639  |t Journal of Physical Chemistry A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035967386&partnerID=40&md5=c922601cf5d8b1ef0f6b0eed63b07bd2  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10895639_v105_n12_p2646_Laria  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v105_n12_p2646_Laria  |y Registro en la Biblioteca Digital 
961 |a paper_10895639_v105_n12_p2646_Laria  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 81614