A note on equivalence of means

Given a real interval I, a relation, denoted by '∼', is defined on the set of means on I x I by setting M ∼ N when there exists a surjective continuous function f solving the functional equation f(M(x,y)) = N(f (x),f(y)), x,y ∈ I . A surjective and continuous solution to this equation turn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Berrone, L.R
Otros Autores: Lombardi, A.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02834caa a22003977a 4500
001 PAPER-1882
003 AR-BaUEN
005 20230518203113.0
008 190411s2001 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0039251753 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Berrone, L.R. 
245 1 2 |a A note on equivalence of means 
260 |c 2001 
270 1 0 |m Berrone, L.R.; Departamento de Matemática, Av. Pellegrini 250, 2000 - Rosario, Argentina; email: berrone@fceia.unr.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Aczél, J., (1966) Lectures on Functional Equations and Their Applications, , Academic Press, New York and London 
504 |a Berrone, L.R., Moro, J., On means generated through the Cauchy's mean value theorem Aequationes Math., , to appear 
504 |a Borwein, J.M., Borwein, P.B., (1987) Pi and the AGM, , John Wiley & Sons, New York 
504 |a Dhombres, J.G., Some recent applications of functional equations (1984) Functional Equations: History, Applications and Theory, pp. 67-91. , (J. Aczél, ed.), D. Reidel, Dordrecht 
504 |a Bullen, P.S., Mitrinović, D.S., Vasić, P.M., (1988) Means and Their Inequalities, , D. Reidel, Dordrecht 
504 |a Pietra, G., Di una formula per il calcolo delle medie combinatorie (1939) Attn. Soc. Progr. Sci., 27 (5), pp. 38-45 
520 3 |a Given a real interval I, a relation, denoted by '∼', is defined on the set of means on I x I by setting M ∼ N when there exists a surjective continuous function f solving the functional equation f(M(x,y)) = N(f (x),f(y)), x,y ∈ I . A surjective and continuous solution to this equation turns out to be injective and so, '∼' is an equivalence. This fact seems to be not properly noticed in the literature on means.  |l eng 
593 |a Departamento de Matemática, Av. Pellegrini 250, 2000 - Rosario, Argentina 
593 |a Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 - Buenos Aires, Argentina 
690 1 0 |a CONTINUOUS MEAN 
690 1 0 |a EQUIVALENCE 
690 1 0 |a INTERNAL FUNCTION 
700 1 |a Lombardi, A.L. 
773 0 |d 2001  |g v. 58  |h pp. 49-56  |k n. 1  |p Publ. Math.  |x 00333883  |t Publicationes Mathematicae 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0039251753&partnerID=40&md5=fed79276c534281a82557f5da8c9cf53  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00333883_v58_n1_p49_Berrone  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00333883_v58_n1_p49_Berrone  |y Registro en la Biblioteca Digital 
961 |a paper_00333883_v58_n1_p49_Berrone  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 62835