A note on equivalence of means
Given a real interval I, a relation, denoted by '∼', is defined on the set of means on I x I by setting M ∼ N when there exists a surjective continuous function f solving the functional equation f(M(x,y)) = N(f (x),f(y)), x,y ∈ I . A surjective and continuous solution to this equation turn...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2001
|
| Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 02834caa a22003977a 4500 | ||
|---|---|---|---|
| 001 | PAPER-1882 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203113.0 | ||
| 008 | 190411s2001 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-0039251753 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Berrone, L.R. | |
| 245 | 1 | 2 | |a A note on equivalence of means |
| 260 | |c 2001 | ||
| 270 | 1 | 0 | |m Berrone, L.R.; Departamento de Matemática, Av. Pellegrini 250, 2000 - Rosario, Argentina; email: berrone@fceia.unr.edu.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Aczél, J., (1966) Lectures on Functional Equations and Their Applications, , Academic Press, New York and London | ||
| 504 | |a Berrone, L.R., Moro, J., On means generated through the Cauchy's mean value theorem Aequationes Math., , to appear | ||
| 504 | |a Borwein, J.M., Borwein, P.B., (1987) Pi and the AGM, , John Wiley & Sons, New York | ||
| 504 | |a Dhombres, J.G., Some recent applications of functional equations (1984) Functional Equations: History, Applications and Theory, pp. 67-91. , (J. Aczél, ed.), D. Reidel, Dordrecht | ||
| 504 | |a Bullen, P.S., Mitrinović, D.S., Vasić, P.M., (1988) Means and Their Inequalities, , D. Reidel, Dordrecht | ||
| 504 | |a Pietra, G., Di una formula per il calcolo delle medie combinatorie (1939) Attn. Soc. Progr. Sci., 27 (5), pp. 38-45 | ||
| 520 | 3 | |a Given a real interval I, a relation, denoted by '∼', is defined on the set of means on I x I by setting M ∼ N when there exists a surjective continuous function f solving the functional equation f(M(x,y)) = N(f (x),f(y)), x,y ∈ I . A surjective and continuous solution to this equation turns out to be injective and so, '∼' is an equivalence. This fact seems to be not properly noticed in the literature on means. |l eng | |
| 593 | |a Departamento de Matemática, Av. Pellegrini 250, 2000 - Rosario, Argentina | ||
| 593 | |a Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 - Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a CONTINUOUS MEAN |
| 690 | 1 | 0 | |a EQUIVALENCE |
| 690 | 1 | 0 | |a INTERNAL FUNCTION |
| 700 | 1 | |a Lombardi, A.L. | |
| 773 | 0 | |d 2001 |g v. 58 |h pp. 49-56 |k n. 1 |p Publ. Math. |x 00333883 |t Publicationes Mathematicae | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0039251753&partnerID=40&md5=fed79276c534281a82557f5da8c9cf53 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00333883_v58_n1_p49_Berrone |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00333883_v58_n1_p49_Berrone |y Registro en la Biblioteca Digital |
| 961 | |a paper_00333883_v58_n1_p49_Berrone |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 62835 | ||