On the minimizers of the fusion frame potential

We study the minimizers of the fusion frame potential in the case that both the weights and the dimensions of the subspaces are fixed and not necessarily equal. Using a concept of irregularity we provide a description of the local (that are also global) minimizers which projections are eigenoperator...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Heineken, S.B
Otros Autores: Llarena, J.P, Morillas, P.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley-VCH Verlag 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We study the minimizers of the fusion frame potential in the case that both the weights and the dimensions of the subspaces are fixed and not necessarily equal. Using a concept of irregularity we provide a description of the local (that are also global) minimizers which projections are eigenoperators of the fusion frame operator. This result will be related to the existence of tight fusion frames. In this way we generalize results known for the classical vector frame potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Bibliografía:Benedetto, J.J., Fickus, M., Finite normalized tight frames (2003) Adv. Comput. Math., 18, pp. 357-385
Carrizo, I., Heineken, S., Critical pairs of sequences of a mixed frame potential (2014) Numer. Funct. Anal. Optim., 35, pp. 665-684
Casazza, P.G., Fickus, M., Minimizing fusion frame potential (2009) Acta Appl. Math., 107, pp. 7-24
Casazza, P.G., A physical interpretation of tight frames, Harmonic Analysis and Applications (2006) Appl. Numer. Harmon. Anal., pp. 51-76. , Birkhäuser Boston, Boston
Casazza, P.G., Kutyniok, G., Finite frames. Theory and applications (2012) Appl. Numer. Harmon. Anal., , (eds.), Birkhäuser, Boston
Casazza, P.G., Kutyniok, G., Frames of subspaces (2004) Contemp. Math., 345, pp. 87-113
Casazza, P.G., Kutyniok, G., Li, S., Fusion frames and distributed processing (2008) Appl. Comput. Harmon. Anal., 25, pp. 114-132
Christensen, O., (2003) An introduction to frames and Riesz bases, , Birkhäuser, Boston
Fickus, M., Convolutional frames and the frame potential (2005) Appl. Comput. Harmon. Anal., 19, pp. 77-91
Johnson, B.D., Okoudjou, K.A., Frame potential and finite abelian groups (2008) Contemp. Math., 464, pp. 137-148
Kovačević, J., Chebira, A., An introduction to frames (2008) Found. Trends Signal Process., 2, pp. 1-94
Massey, P.G., Ruiz, M.A., Stojanoff, D., The structure of the minimizers of the frame potential on fusion frames (2010) J. Fourier Anal. Appl., 16, pp. 514-543
ISSN:0025584X
DOI:10.1002/mana.201500493