Estimating additive models with missing responses
For multivariate regressors, the Nadaraya-Watson regression estimator suffers from the well-known curse of dimensionality. Additive models overcome this drawback. To estimate the additive components, it is usually assumed that we observe all the data. However, in many applied statistical analysis mi...
Guardado en:
Autor principal: | Boente, G. |
---|---|
Otros Autores: | Martínez, A.M |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Taylor and Francis Inc.
2016
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Ejemplares similares
-
Estimating additive models with missing responses
por: Boente, G., et al. -
Estimating additive models with missing responses
por: Boente, Graciela Lina, et al.
Publicado: (2016) -
Asymptotic behavior of robust estimators in partially linear models with missing responses: The effect of estimating the missing probability on the simplified marginal estimators
por: Bianco, Ana María, et al.
Publicado: (2011) -
Asymptotic behavior of robust estimators in partially linear models with missing responses: The effect of estimating the missing probability on the simplified marginal estimators
por: Bianco, A., et al. -
Marginal integration M-estimators for additive models
por: Boente, G.
Publicado: (2017)