Estimating additive models with missing responses
For multivariate regressors, the Nadaraya-Watson regression estimator suffers from the well-known curse of dimensionality. Additive models overcome this drawback. To estimate the additive components, it is usually assumed that we observe all the data. However, in many applied statistical analysis mi...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Taylor and Francis Inc.
2016
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | For multivariate regressors, the Nadaraya-Watson regression estimator suffers from the well-known curse of dimensionality. Additive models overcome this drawback. To estimate the additive components, it is usually assumed that we observe all the data. However, in many applied statistical analysis missing data occur. In this paper, we study the effect of missing responses on the additive components estimation. The estimators are based on marginal integration adapted to the missing situation. The proposed estimators turn out to be consistent under mild assumptions. A simulation study allows to compare the behavior of our procedures, under different scenarios. © 2016 Taylor & Francis Group, LLC. |
---|---|
Bibliografía: | Aerts, M., Claeskens, G., Hens, N., Molenberghs, G., Local multiple imputation (2002) Biometrika, 89 (2), pp. 375-388 Boente, G., Martínez, A., (2012) Estimating Additive Models with Missing Responses, , www.ic.fcen.uba.ar/preprints/Paper_aditivo_Boente_Martinez.pdf Buja, A., Hastie, T., Tibshirani, R., Linear smoothers and additive models (with discussion) (1989) Ann. Stat., 17, pp. 453-555 Chen, J.H., Shao, J., Nearest neighbor imputation for survey data (2000) J. Off. Stat., 16, pp. 113-131 Cheng, P.E., Applications of kernel regression estimation: A survey (1990) Commun. Stat. Ser. A, Theory Methods, 19, pp. 4103-4134 Cheng, P.E., Nonparametric estimation of mean functionals with data missing at random (1994) J. Am. Stat. Assoc., 89, pp. 81-87 Cheng, P.E., Wei, L.J., Nonparametric inference under ignorable missing data process and treatment assignment (1986) Int. Stat. Symposium, Taipei, ROC, 1, pp. 97-112 Chu, C.K., Cheng, P.E., Nonparametric regression estimation with missing data (1995) J. Stat. Plan. Inference, 48, pp. 85-99 Devroye, L.P., The uniform convergence of the Nadaraya-Watson regression function estimate (1978) Can. J. Stat., 6, pp. 179-191 González-Manteiga, W., Pérez-González, A., Nonparametric mean estimation with missing data (2004) Commun. Stat. Theory Methods, 33, pp. 277-303 Härdle, W., Müller, M., Sperlich, S., Werwatz, A., Nonparametric and Semiparametric Models (2004) Springer Series in Statistics, , Berlin: Springer Hastie, T.J., Tibshirani, R.J., (1990) Generalized Additive Models, , London: Chapman and Hall Hengartner, N.W., Sperlich, S., Rate optimal estimation with the integration method in the presence of many covariates (2005) J. Multivar. Anal, 95, pp. 246-272 Hirano, K., Imbens, G., Ridder, G., Efficient Estimation of Average Treatment Effects using the Estimated Propensity Score (2000) NBER Technical Working Paper 251 Koul, H.L., Muüller, U.U., Schick, A., The Transfer Principle: A tool for complete case analysis (2012) Ann. Stat., 40, pp. 3031-3049 Linton, O.B., Härdle, W., Estimation of additive regression models with known links (1996) Biometrika, 83, pp. 529-540 Linton, O.B., Nielsen, J.P., A kernel method of estimating structured nonparametric regression based on marginal integration (1995) Biometrika, 82, pp. 93-101 Mammen, E., Park, C., Bandwidth selection for smooth backfitting in additive models (2005) The Annals of Statistics, 33, pp. 1260-1294 Mammen, E., Linton, O., Nielsen, J.P., The existence and asymptotic properties of a backfitting projection algorithm under weak conditions (1999) Ann. Stat., 27, pp. 1443-1490 Martínez-Miranda, M.D., Raya-Miranda, R., González-Manteiga, W., González-Carmona, A., A bootstrap local bandwidth selector for additive models (2008) J. Comput. Graph. Stat., 17, pp. 38-55 Martínez-Miranda, M.D., Raya-Miranda, R., Data-driven local bandwidth selection for additive models with missing data (2011) Appl. Math. Comput., 217, pp. 10328-10342 Nadaraya, E.A., On estimating regression (1964) Theory Prob. Appl., 9, pp. 141-142 Neyman, J., Contribution to the theory of sampling human populations (1938) J. Am. Stat. Assoc., 33, pp. 101-116 Newey, W.K., Kernel estimation of partial means (1994) Econ. Theory, 10, pp. 233-253 Nielsen, J.P., Sperlich, S., Smooth backfitting in practise (2005) Journal of the Royal Statistical Society, Ser. B, 67, pp. 43-61 Opsomer, J.D., Asymptotic properties of backfitting estimators (2000) J. Multivar. Anal., 73, pp. 166-179 Prakasa Rao, B.L.S., (1983) Nonparametric Functional Estimation, , London: Academic Press Stone, C.J., The dimensionality reduction principle for generalized additive models (1986) Ann. Statist., 14, pp. 590-606 Tjostheim, D., Auestad, B.H., Nonparametric identification of nonlinear time series: Projections (1994) J. Am. Stat. Assoc., 89, pp. 1398-1409 Wang, Q., Linton, O., Härdle, W., Semiparametric regression analysis with missing response at random (2004) J. Am. Stat. Assoc., 99 (466), pp. 334-345 Wang, W., Rao, J.N.K., Empirical likelihood-based inference under imputation for missing response data (2002) Ann. Stat., 30, pp. 896-924 Watson, G.S., Smooth regression analysis (1964) Sankhya¯ A, 26, pp. 359-372 |
ISSN: | 03610926 |
DOI: | 10.1080/03610926.2013.815780 |