Estimating additive models with missing responses

For multivariate regressors, the Nadaraya-Watson regression estimator suffers from the well-known curse of dimensionality. Additive models overcome this drawback. To estimate the additive components, it is usually assumed that we observe all the data. However, in many applied statistical analysis mi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boente, G.
Otros Autores: Martínez, A.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Inc. 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:For multivariate regressors, the Nadaraya-Watson regression estimator suffers from the well-known curse of dimensionality. Additive models overcome this drawback. To estimate the additive components, it is usually assumed that we observe all the data. However, in many applied statistical analysis missing data occur. In this paper, we study the effect of missing responses on the additive components estimation. The estimators are based on marginal integration adapted to the missing situation. The proposed estimators turn out to be consistent under mild assumptions. A simulation study allows to compare the behavior of our procedures, under different scenarios. © 2016 Taylor & Francis Group, LLC.
Bibliografía:Aerts, M., Claeskens, G., Hens, N., Molenberghs, G., Local multiple imputation (2002) Biometrika, 89 (2), pp. 375-388
Boente, G., Martínez, A., (2012) Estimating Additive Models with Missing Responses, , www.ic.fcen.uba.ar/preprints/Paper_aditivo_Boente_Martinez.pdf
Buja, A., Hastie, T., Tibshirani, R., Linear smoothers and additive models (with discussion) (1989) Ann. Stat., 17, pp. 453-555
Chen, J.H., Shao, J., Nearest neighbor imputation for survey data (2000) J. Off. Stat., 16, pp. 113-131
Cheng, P.E., Applications of kernel regression estimation: A survey (1990) Commun. Stat. Ser. A, Theory Methods, 19, pp. 4103-4134
Cheng, P.E., Nonparametric estimation of mean functionals with data missing at random (1994) J. Am. Stat. Assoc., 89, pp. 81-87
Cheng, P.E., Wei, L.J., Nonparametric inference under ignorable missing data process and treatment assignment (1986) Int. Stat. Symposium, Taipei, ROC, 1, pp. 97-112
Chu, C.K., Cheng, P.E., Nonparametric regression estimation with missing data (1995) J. Stat. Plan. Inference, 48, pp. 85-99
Devroye, L.P., The uniform convergence of the Nadaraya-Watson regression function estimate (1978) Can. J. Stat., 6, pp. 179-191
González-Manteiga, W., Pérez-González, A., Nonparametric mean estimation with missing data (2004) Commun. Stat. Theory Methods, 33, pp. 277-303
Härdle, W., Müller, M., Sperlich, S., Werwatz, A., Nonparametric and Semiparametric Models (2004) Springer Series in Statistics, , Berlin: Springer
Hastie, T.J., Tibshirani, R.J., (1990) Generalized Additive Models, , London: Chapman and Hall
Hengartner, N.W., Sperlich, S., Rate optimal estimation with the integration method in the presence of many covariates (2005) J. Multivar. Anal, 95, pp. 246-272
Hirano, K., Imbens, G., Ridder, G., Efficient Estimation of Average Treatment Effects using the Estimated Propensity Score (2000) NBER Technical Working Paper 251
Koul, H.L., Muüller, U.U., Schick, A., The Transfer Principle: A tool for complete case analysis (2012) Ann. Stat., 40, pp. 3031-3049
Linton, O.B., Härdle, W., Estimation of additive regression models with known links (1996) Biometrika, 83, pp. 529-540
Linton, O.B., Nielsen, J.P., A kernel method of estimating structured nonparametric regression based on marginal integration (1995) Biometrika, 82, pp. 93-101
Mammen, E., Park, C., Bandwidth selection for smooth backfitting in additive models (2005) The Annals of Statistics, 33, pp. 1260-1294
Mammen, E., Linton, O., Nielsen, J.P., The existence and asymptotic properties of a backfitting projection algorithm under weak conditions (1999) Ann. Stat., 27, pp. 1443-1490
Martínez-Miranda, M.D., Raya-Miranda, R., González-Manteiga, W., González-Carmona, A., A bootstrap local bandwidth selector for additive models (2008) J. Comput. Graph. Stat., 17, pp. 38-55
Martínez-Miranda, M.D., Raya-Miranda, R., Data-driven local bandwidth selection for additive models with missing data (2011) Appl. Math. Comput., 217, pp. 10328-10342
Nadaraya, E.A., On estimating regression (1964) Theory Prob. Appl., 9, pp. 141-142
Neyman, J., Contribution to the theory of sampling human populations (1938) J. Am. Stat. Assoc., 33, pp. 101-116
Newey, W.K., Kernel estimation of partial means (1994) Econ. Theory, 10, pp. 233-253
Nielsen, J.P., Sperlich, S., Smooth backfitting in practise (2005) Journal of the Royal Statistical Society, Ser. B, 67, pp. 43-61
Opsomer, J.D., Asymptotic properties of backfitting estimators (2000) J. Multivar. Anal., 73, pp. 166-179
Prakasa Rao, B.L.S., (1983) Nonparametric Functional Estimation, , London: Academic Press
Stone, C.J., The dimensionality reduction principle for generalized additive models (1986) Ann. Statist., 14, pp. 590-606
Tjostheim, D., Auestad, B.H., Nonparametric identification of nonlinear time series: Projections (1994) J. Am. Stat. Assoc., 89, pp. 1398-1409
Wang, Q., Linton, O., Härdle, W., Semiparametric regression analysis with missing response at random (2004) J. Am. Stat. Assoc., 99 (466), pp. 334-345
Wang, W., Rao, J.N.K., Empirical likelihood-based inference under imputation for missing response data (2002) Ann. Stat., 30, pp. 896-924
Watson, G.S., Smooth regression analysis (1964) Sankhya¯ A, 26, pp. 359-372
ISSN:03610926
DOI:10.1080/03610926.2013.815780