Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae

PKA (cAMP-dependent protein kinase) activity, as well as that of other AGC members, is regulated by multiple phosphorylations of its catalytic subunits. In Saccharomyces cerevisiae, the PKA regulatory subunit is encoded by the gene BCY1, and the catalytic subunits are encoded by three genes: TPK1, T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Solari, C.A
Otros Autores: Tudisca, V., Pugliessi, M., Nadra, A.D, Moreno, S., Portela, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Portland Press Ltd 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:PKA (cAMP-dependent protein kinase) activity, as well as that of other AGC members, is regulated by multiple phosphorylations of its catalytic subunits. In Saccharomyces cerevisiae, the PKA regulatory subunit is encoded by the gene BCY1, and the catalytic subunits are encoded by three genes: TPK1, TPK2 and TPK3. Previously,we have reported that, following cAMP/PKA pathway activation, Tpk1 increases its phosphorylation status. Now, in vivo genetic and in vitro experiments indicate an autophosphorylation mechanism for Tpk1. Using array peptides derived from Tpk1, we identified Ser179 as a target residue. Tpk1 is phosphorylated on Ser179 in vivo during glucose stimulus. Reduction of the activation loop Thr241 phosphorylation increases Ser179 autophosphorylation. To evaluate the role of phosphorylation on Ser 179, wemade strains expressing tpk1S179A or tpk1 S179D as the sole PKA kinase source. Our results suggest that Ser179 phosphorylation increases the reactivity towards the substrate without affecting the formation of the holoenzyme. Phenotypic readout analysis showed that Ser179 phosphorylation increases in vivo PKA activity, reducingcell survival, stress and lifespan. Ser179 phosphorylation increases Tpk1 cytoplasmic accumulation in glucose-grown cells. These results describe for the first time that an autophosphorylation mechanism on Tpk1 controls PKA activity in response to glucose availability. © 2014 Biochemical Society.
Bibliografía:Taylor, S.S., Zhang, P., Steichen, J.M., Keshwani, M.M., Kornev, A.P., PKA: Lessons learned after twenty years (2013) Biochim. Biophys. Acta, 1834, pp. 1271-1278
Keshwani, M.M., Klammt, C., Von Daake, S., Ma, Y., Kornev, A.P., Choe, S., Insel, P.A., Taylor, S.S., Cotranslational cis-phosphorylation of the COOH-terminal tail is a key priming step in the maturation of cAMP-dependent protein kinase (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 1221-1229
Cheng, X., Ma, Y., Moore, M., Hemmings, B.A., Taylor, S.S., Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 9849-9854
Williams, M.R., Arthur, J.S., Balendran, A., Van Der Kaay, J., Poli, V., Cohen, P., Alessi, D.R., The role of 3-phosphoinositide-dependent protein kinase in activating AGC kinases defined in embryonic stem cells (2000) Curr. Biol., 10, pp. 439-448
Voordeckers, K., Kimpe, M., Haesendonckx, S., Louwet, W., Versele, M., Thevelein, J.M., Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9 (2011) J. Biol. Chem., 286, pp. 22017-22027
Haesendonckx, S., Tudisca, V., Voordeckers, K., Moreno, S., Thevelein, J.M., Portela, P., The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae (2012) Biochem. J., 448, pp. 307-320
Thevelein, J.M., Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: The relationship to nutrient-induced cell cycle control (1991) Mol. Microbiol., 5, pp. 1301-1307
Rolland, F., De Winde, J.H., Lemaire, K., Boles, E., Thevelein, J.M., Winderickx, J., Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process (2000) Mol. Microbiol., 38, pp. 348-358
Lu, A., Hirsch, J.P., Cyclic AMP-independent regulation of protein kinase A substrate phosphorylation by Kelch repeat proteins (2005) Eukaryot. Cell, 4, pp. 1794-1800
Peeters, T., Louwet, W., Gelade, R., Nauwelaers, D., Thevelein, J.M., Versele, M., Kelch-repeat proteins interacting with the Ga protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 13034-13039
Budhwar, R., Lu, A., Hirsch, J.P., Nutrient control of yeast PKA activity involves opposing effects on phosphorylation of the Bcy1 regulatory subunit (2010) Mol. Biol. Cell, 21, pp. 3749-3758
Budhwar, R., Fang, G., Hirsch, J.P., Kelch repeat proteins control yeast PKA activity in response to nutrient availability (2011) Cell Cycle, 10, pp. 767-770
Ma, P., Wera, S., Van Dijck, P., Thevelein, J.M., The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling (1999) Mol. Biol. Cell, 10, pp. 91-104
Hu, Y., Liu, E., Bai, X., Zhang, A., The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae (2010) FEMS Yeast Res., 10, pp. 177-187
Durnez, P., Pernambuco, M.B., Oris, E., Arguelles, J.C., Mergelsberg, H., Thevelein, J.M., Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins (1994) Yeast, 10, pp. 1049-1064
Thevelein, J.M., Bonini, B.M., Castermans, D., Haesendonckx, S., Kriel, J., Louwet, W., Thayumanavan, P., Schepers, W., Novel mechanisms in nutrient activation of the yeast protein kinase A pathway (2008) Acta Microbiol Immunol. Hung., 55, pp. 75-89
Thevelein, J.M., Cauwenberg, L., Colombo, S., De Winde, J.H., Donation, M., Dumortier, F., Kraakman, L., Nauwelaers, D., Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast (2000) Enzyme Microb. Technol., 26, pp. 819-825
Griffioen, G., Anghileri, P., Imre, E., Baroni, M.D., Ruis, H., Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae (2000) J. Biol. Chem., 275, pp. 1449-1456
Zhang, A., Shen, Y., Gao, W., Dong, J., Role of Sch9 in regulating Ras-cAMP signal pathway in Saccharomyces cerevisiae (2011) FEBS Lett., 585, pp. 3026-3032
Tudisca, V., Recouvreux, V., Moreno, S., Boy-Marcotte, E., Jacquet, M., Portela, P., Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions (2010) Eur. J. Cell Biol., 89, pp. 339-348
Tudisca, V., Simpson, C., Castelli, L., Lui, J., Hoyle, N., Moreno, S., Ashe, M., Portela, P., PKA isoforms coordinate mRNA fate during nutrient starvation (2012) J. Cell Sci., 125, pp. 5221-5232
Portela, P., Moreno, S., Glucose-dependent activation of protein kinase A activity in Saccharomyces cerevisiae and phosphorylation of its TPK1 catalytic subunit (2006) Cell. Signal., 18, pp. 1072-1086
Ito, H., Fukuda, Y., Murata, K., Kimura, A., Transformation of intact yeast cells treated with alkali cations (1983) J. Bacteriol., 153, pp. 163-168
Muhlrad, D., Hunter, R., Parker, R., A rapid method for localized mutagenesis of yeast genes (1992) Yeast, 8, pp. 79-82
Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O'Shea, E.K., Global analysis of protein localization in budding yeast (2003) Nature, 425, pp. 686-691
Portela, P., Howell, S., Moreno, S., Rossi, S., In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase (2002) A. J. Biol. Chem., 277, pp. 30477-30487
Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., Seraphin, B., The tandem affinity purification (TAP) method: A general procedure of protein complex purification (2001) Methods, 24, pp. 218-229
Galello, F., Portela, P., Moreno, S., Rossi, S., Characterization of substrates that have a differential effect on Saccharomyces cerevisiae protein kinase A holoenzyme activation (2010) J. Biol. Chem., 285, pp. 29770-29779
Roskoski, Jr.R., Assays of protein kinase (1983) Methods Enzymol., 99, pp. 3-6
Chester, V.E., Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light (1968) J. Gen. Microbiol., 51, pp. 49-56
Mirisola, M.G., Braun, R.J., Petranovic, D., Approaches to study yeast cell aging and death (2013) FEMS Yeast Res., , doi:10.1111/1567-1364.12112
Thevelein, J.M., Beullens, M., Honshoven, F., Hoebeeck, G., Detremerie, K., Griewel, B., Den Hollander, J.A., Jans, A.W., Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: The glucose-induced cAMP signal is not mediated by a transient drop in the intracellular pH (1987) J. Gen. Microbiol., 133, pp. 2197-2205
Gibbs, C.S., Knighton, D.R., Sowadski, J.M., Taylor, S.S., Zoller, M.J., Systematic mutational analysis of cAMP-dependent protein kinase identifies unregulated catalytic subunits and defines regions important for the recognition of the regulatory subunit (1992) J. Biol. Chem., 267, pp. 4806-4814
Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., Serrano, L., The FoldX web server: An online force field (2005) Nucleic Acids Res., 33, pp. W382-W388
Soulard, A., Cremonesi, A., Moes, S., Schutz, F., Jeno, P., Hall, M.N., The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates (2010) Mol. Biol. Cell, 21, pp. 3475-3486
Fabrizio, P., Pozza, F., Pletcher, S.D., Gendron, C.M., Longo, V.D., Regulation of longevity and stress resistance by Sch9 in yeast (2001) Science, 292, pp. 288-290
Longo, V.D., Fabrizio, P., Chronological aging in Saccharomyces cerevisiae (2012) Subcell. Biochem., 57, pp. 101-121
Roberts, E., Eargle, J., Wright, D., Luthey-Schulten, Z., MultiSeq: Unifying sequence and structure data for evolutionary analysis (2006) BMC Bioinformatics, 7, p. 382
Thevelein, J.M., De Winde, J.H., Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae (1999) Mol. Microbiol., 33, pp. 904-918
Masterson, L.R., Cheng, C., Yu, T., Tonelli, M., Kornev, A., Taylor, S.S., Veglia, G., Dynamics connect substrate recognition to catalysis in protein kinase A (2010) Nat. Chem. Biol., 6, pp. 821-828
Karlsson, R., Madhusudan Taylor, S.S., Sowadski, J.M., Intermolecular contacts in various crystal forms related to the open and closed conformational states of the catalytic subunit of cAMP-dependent protein kinase (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 657-662
Nirula, A., Ho, M., Phee, H., Roose, J., Weiss, A., Phosphoinositide-dependent kinase targets protein kinase A in a pathway that regulates interleukin 4 (2006) J. Exp. Med., 203, pp. 1733-1744
Cauthron, R.D., Carter, K.B., Liauw, S., Steinberg, R.A., Physiological phosphorylation of protein kinase A at Thr-197 is by a protein kinase A kinase (1998) Mol. Cell. Biol., 18, pp. 1416-1423
Castermans, D., Somers, I., Kriel, J., Louwet, W., Wera, S., Versele, M., Janssens, V., Thevelein, J.M., Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast (2012) Cell Res., 22, pp. 1058-1077
Yonemoto, W., McGlone, M.L., Grant, B., Taylor, S.S., Autophosphorylation of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli (1997) Protein Eng., 10, pp. 915-925
Santangelo, G.M., Glucose signaling in Saccharomyces cerevisiae (2006) Microbiol. Mol. Biol. Rev., 70, pp. 253-282
Tamaki, H., Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae (2007) J. Biosci. Bioeng., 104, pp. 245-250
Gancedo, J.M., The early steps of glucose signalling in yeast (2008) FEMS Microbiol. Rev., 32, pp. 673-704
Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., Ruis, H., Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain (2001) Mol. Cell. Biol., 21, pp. 511-523
Voordeckers, K., Kimpe, M., Haesendonckx, S., Louwet, W., Versele, M., Thevelein, J.M., Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9 (2011) J. Biol. Chem., 286, pp. 22017-22027
Bolte, M., Dieckhoff, P., Krause, C., Braus, G.H., Irniger, S., Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae (2003) Microbiology, 149, pp. 1205-1216
Inagaki, M., Schmelzle, T., Yamaguchi, K., Irie, K., Hall, M.N., Matsumoto, K., PDK1 homologs activate the Pkc1-mitogen-activated protein kinase pathway in yeast (1999) Mol. Cell. Biol., 19, pp. 8344-8352
ISSN:02646021
DOI:10.1042/BJ20140577