Vibrational cooling and thermoelectric response of nanoelectromechanical systems
An important goal in nanoelectromechanics is to cool the vibrational motion, ideally to its quantum ground state. Cooling by an applied charge current is a particularly simple and hence attractive strategy to this effect. Here we explore this phenomenon in the context of the general theory of thermo...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Physical Society
2014
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08315caa a22007937a 4500 | ||
|---|---|---|---|
| 001 | PAPER-14086 | ||
| 003 | AR-BaUEN | ||
| 005 | 20241001104357.0 | ||
| 008 | 190411s2014 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84907462218 | |
| 030 | |a PRBMD | ||
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Arrachea, Liliana del Carmen | |
| 245 | 1 | 0 | |a Vibrational cooling and thermoelectric response of nanoelectromechanical systems |
| 260 | |b American Physical Society |c 2014 | ||
| 270 | 1 | 0 | |m Arrachea, L.; Departamento de Física, Facultad de Ciencias Exactas y Naturales and IFIBA, Universidad de Buenos AiresArgentina |
| 504 | |a Safavi-Naeini, A.H., Chan, J., Hill, J.T., Mayer Alegre, T.P., Krause, A., Painter, O., (2012) Phys. Rev. Lett., 108, p. 033602. , PRLTAO 0031-9007 | ||
| 504 | |a Clerk, A.A., (2012) Physics, 5, p. 8 | ||
| 504 | |a Marquardt, F., Girvin, S., (2009) Physics, 2, p. 40. , references therein. 1943-2879 | ||
| 504 | |a Zippilli, S., Morigi, G., Bachtold, A., (2009) Phys. Rev. Lett., 102, p. 096804. , PRLTAO 0031-9007 | ||
| 504 | |a Zippilli, S., Bachtold, A., Morigi, G., (2010) Phys. Rev. B, 81, p. 205408. , PRBMDO 1098-0121 | ||
| 504 | |a Santandrea, F., Gorelik, L.Y., Shekhter, R.I., Jonson, M., (2011) Phys. Rev. Lett., 106, p. 186803. , PRLTAO 0031-9007 | ||
| 504 | |a Pistolesi, F., (2009) J. Low Temp. Phys., 154, p. 199. , JLTPAC 0022-2291 | ||
| 504 | |a Galperin, M., Saito, K., Balatsky, A.V., Nitzan, A., (2009) Phys. Rev. B, 80, p. 115427. , PRBMDO 1098-0121 | ||
| 504 | |a Schiff, P.R., Nitzan, A., (2010) Chem. Phys., 375, p. 399. , 0301-0104 | ||
| 504 | |a McEniry, E.J., Todorov, T.N., Dundas, D., (2009) J. Phys.: Condens. Matter, 21, p. 195304. , JCOMEL 0953-8984 | ||
| 504 | |a Galperin, M., Nitzan, A., Ratner, M.A., (2007) Phys. Rev. B, 75, p. 155312. , PRBMDO 1098-0121 | ||
| 504 | |a Naik, A., Buu, O., Lahaye, M.D., Armour, A.D., Clerk, A.A., Blencowe, M.P., Schwab, K.C., (2006) Nature (London), 443, p. 193. , NATUAS 0028-0836 | ||
| 504 | |a Prance, J.R., Smith, C.G., Griffiths, J.P., Chorley, S.J., Anderson, D., Jones, G.A.C., Farrer, I., Ritchie, D.A., (2009) Phys. Rev. Lett., 102, p. 146602. , PRLTAO 0031-9007 | ||
| 504 | |a Muhonen, J.T., Meschke, M., Pekola, J.P., (2012) Rep. Prog. Phys., 75, p. 046501. , RPPHAG 0034-4885 | ||
| 504 | |a Chamon, C., Mucciolo, E.R., Arrachea, L., Capaz, R.B., (2011) Phys. Rev. Lett., 106, p. 135504. , PRLTAO 0031-9007 | ||
| 504 | |a Arrachea, L., Mucciolo, E.R., Chamon, C., Capaz, R.B., (2012) Phys. Rev. B, 86, p. 125424. , PRLTAO 0031-9007 | ||
| 504 | |a Benenti, G., Saito, K., Casati, G., (2011) Phys. Rev. Lett., 106, p. 230602. , PRLTAO 0031-9007 | ||
| 504 | |a G. Benenti, G. Casati, T. Prosen, and K. Saito, arXiv:1311.4430; Brandner, K., Saito, K., Seifert, U., (2013) Phys. Rev. Lett., 110, p. 070603. , PRLTAO 0031-9007 | ||
| 504 | |a Juergens, S., Haupt, F., Moskalets, M., Splettstoesser, J., (2013) Phys. Rev. B, 87, p. 245423. , PRBMDO 1098-0121 | ||
| 504 | |a F. Haupt, M. Leijnse, H. L. Calvo, L. Classen, J. Splettstoesser, and M. R. Wegewijs, arXiv:1306.4343; Jiang, J.-H., Entin-Wohlman, O., Imry, Y., (2012) Phys. Rev. B, 85, p. 075412. , PRBMDO 1098-0121 | ||
| 504 | |a Entin-Wohlman, O., Jiang, J.-H., Imry, Y., (2014) Phys. Rev. e, 89, p. 012123 | ||
| 504 | |a Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A., (2012) Nat. Nanotechnol., 7, p. 301. , 1748-3387 | ||
| 504 | |a Benyamini, A., Hamo, A., Viola Kusminskiy, S., Von Oppen, F., Ilani, S., (2014) Nat. Phys., 10, p. 151. , 1745-2473 | ||
| 504 | |a Lü, J.-T., Hedegard, P., Brandbyge, M., (2011) Phys. Rev. Lett., 107, p. 046801. , PRLTAO 0031-9007 | ||
| 504 | |a Koch, J., Von Oppen, F., Andreev, A.V., (2006) Phys. Rev. B, 74, p. 205438. , PRBMDO 1098-0121 | ||
| 504 | |a Pistolesi, F., Blanter Ya., M., Martin, I., (2008) Phys. Rev. B, 78, p. 085127. , PRBMDO 1098-0121 | ||
| 504 | |a Bode, N., Kusminskiy, S.V., Egger, R., Von Oppen, F., (2011) Phys. Rev. Lett., 107, p. 036804. , PRLTAO 0031-9007 | ||
| 504 | |a Bode, N., Viola Kusminskiy, S., Egger, R., Von Oppen, F., (2012) Beilstein J. Nanotechnol., 3, p. 144. , 2190-4286 | ||
| 504 | |a Engquist, H.L., Anderson, P.W., (1981) Phys. Rev. B, 24, p. 1151. , PRBMDO 0163-1829 | ||
| 504 | |a Cugliandolo, L.F., Kurchan, J., Peliti, L., (1997) Phys. Rev. e, 55, p. 3898. , 1063-651X | ||
| 504 | |a Zamponi, F., Bonetto, F., Cugliandolo, L.F., Kurchan, J., J. Stat. Mech., 2005, p. P09013. , 1063-651X | ||
| 504 | |a Aita, H., Arrachea, L., Naón, C., Fradkin, E., (2013) Phys. Rev. B, 88, p. 085122. , PRBMDO 1098-0121 | ||
| 504 | |a Arrachea, L., Fradkin, E., (2011) Phys. Rev. B, 84, p. 235436. , PRBMDO 1098-0121 | ||
| 504 | |a Cugliandolo, L., (2011) J. Phys. A, 44, p. 483001. , 1751-8113 | ||
| 504 | |a Koch, J., Von Oppen, F., Oreg, Y., Sela, E., (2004) Phys. Rev. B, 70, p. 195107. , PRBMDO 1098-0121 | ||
| 504 | |a Aleiner, I.L., Brouwer, P.W., Glazman, L.I., (2002) Phys. Rep., 358, p. 309. , PRPLCM 0370-1573 | ||
| 504 | |a Moskalets, M., Büttiker, M., (2004) Phys. Rev. B, 69, p. 205316. , PRBMDO 1098-0121 | ||
| 504 | |a Arrachea, L., Moskalets, M., (2006) Phys. Rev. B, 74, p. 245322. , PRBMDO 1098-0121 | ||
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a An important goal in nanoelectromechanics is to cool the vibrational motion, ideally to its quantum ground state. Cooling by an applied charge current is a particularly simple and hence attractive strategy to this effect. Here we explore this phenomenon in the context of the general theory of thermoelectrics. In linear response, this theory describes thermoelectric refrigerators in terms of their cooling efficiency η and figure of merit ZT. We show that both concepts carry over to phonon cooling in nanoelectromechanical systems. As an important consequence, this allows us to discuss the efficiency of phonon refrigerators in relation to the fundamental Carnot efficiency. We illustrate these general concepts by thoroughly investigating a simple double-quantum-dot model with the dual advantage of being quite realistic experimentally and amenable to a largely analytical analysis theoretically. Specifically, we obtain results for the efficiency, the figure of merit, and the effective temperature of the vibrational motion in two regimes. In the quantum regime in which the vibrational motion is fast compared to the electronic degrees of freedom, we can describe the electronic and phononic dynamics of the model in terms of master equations. In the complementary classical regime of slow vibrational motion, the dynamics is described in terms of an appropriate Langevin equation. Remarkably, we find that the efficiency can approach the maximal Carnot value in the quantum regime, with large associated figures of merit. In contrast, the efficiencies are typically far from the Carnot limit in the classical regime. Our theoretical results should provide guidance to implementing efficient vibrational cooling of nanoelectromechanical systems in the laboratory. © 2014 American Physical Society. |l eng | |
| 593 | |a Departamento de Física, Facultad de Ciencias Exactas y Naturales and IFIBA, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina | ||
| 593 | |a Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, 14195, Germany | ||
| 700 | 1 | |a Bode, N. | |
| 700 | 1 | |a Von Oppen, F. | |
| 773 | 0 | |d American Physical Society, 2014 |g v. 90 |k n. 12 |p Phys. Rev. B Condens. Matter Mater. Phys. |x 10980121 |t Physical Review B - Condensed Matter and Materials Physics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907462218&doi=10.1103%2fPhysRevB.90.125450&partnerID=40&md5=bdaf4a78a6a26b1d5d3eb03df4fd27e0 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevB.90.125450 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_10980121_v90_n12_p_Arrachea |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v90_n12_p_Arrachea |y Registro en la Biblioteca Digital |
| 961 | |a paper_10980121_v90_n12_p_Arrachea |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 75039 | ||