Vibrational cooling and thermoelectric response of nanoelectromechanical systems

An important goal in nanoelectromechanics is to cool the vibrational motion, ideally to its quantum ground state. Cooling by an applied charge current is a particularly simple and hence attractive strategy to this effect. Here we explore this phenomenon in the context of the general theory of thermo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Arrachea, Liliana del Carmen
Otros Autores: Bode, N., Von Oppen, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Physical Society 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08315caa a22007937a 4500
001 PAPER-14086
003 AR-BaUEN
005 20241001104357.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84907462218 
030 |a PRBMD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Arrachea, Liliana del Carmen 
245 1 0 |a Vibrational cooling and thermoelectric response of nanoelectromechanical systems 
260 |b American Physical Society  |c 2014 
270 1 0 |m Arrachea, L.; Departamento de Física, Facultad de Ciencias Exactas y Naturales and IFIBA, Universidad de Buenos AiresArgentina 
504 |a Safavi-Naeini, A.H., Chan, J., Hill, J.T., Mayer Alegre, T.P., Krause, A., Painter, O., (2012) Phys. Rev. Lett., 108, p. 033602. , PRLTAO 0031-9007 
504 |a Clerk, A.A., (2012) Physics, 5, p. 8 
504 |a Marquardt, F., Girvin, S., (2009) Physics, 2, p. 40. , references therein. 1943-2879 
504 |a Zippilli, S., Morigi, G., Bachtold, A., (2009) Phys. Rev. Lett., 102, p. 096804. , PRLTAO 0031-9007 
504 |a Zippilli, S., Bachtold, A., Morigi, G., (2010) Phys. Rev. B, 81, p. 205408. , PRBMDO 1098-0121 
504 |a Santandrea, F., Gorelik, L.Y., Shekhter, R.I., Jonson, M., (2011) Phys. Rev. Lett., 106, p. 186803. , PRLTAO 0031-9007 
504 |a Pistolesi, F., (2009) J. Low Temp. Phys., 154, p. 199. , JLTPAC 0022-2291 
504 |a Galperin, M., Saito, K., Balatsky, A.V., Nitzan, A., (2009) Phys. Rev. B, 80, p. 115427. , PRBMDO 1098-0121 
504 |a Schiff, P.R., Nitzan, A., (2010) Chem. Phys., 375, p. 399. , 0301-0104 
504 |a McEniry, E.J., Todorov, T.N., Dundas, D., (2009) J. Phys.: Condens. Matter, 21, p. 195304. , JCOMEL 0953-8984 
504 |a Galperin, M., Nitzan, A., Ratner, M.A., (2007) Phys. Rev. B, 75, p. 155312. , PRBMDO 1098-0121 
504 |a Naik, A., Buu, O., Lahaye, M.D., Armour, A.D., Clerk, A.A., Blencowe, M.P., Schwab, K.C., (2006) Nature (London), 443, p. 193. , NATUAS 0028-0836 
504 |a Prance, J.R., Smith, C.G., Griffiths, J.P., Chorley, S.J., Anderson, D., Jones, G.A.C., Farrer, I., Ritchie, D.A., (2009) Phys. Rev. Lett., 102, p. 146602. , PRLTAO 0031-9007 
504 |a Muhonen, J.T., Meschke, M., Pekola, J.P., (2012) Rep. Prog. Phys., 75, p. 046501. , RPPHAG 0034-4885 
504 |a Chamon, C., Mucciolo, E.R., Arrachea, L., Capaz, R.B., (2011) Phys. Rev. Lett., 106, p. 135504. , PRLTAO 0031-9007 
504 |a Arrachea, L., Mucciolo, E.R., Chamon, C., Capaz, R.B., (2012) Phys. Rev. B, 86, p. 125424. , PRLTAO 0031-9007 
504 |a Benenti, G., Saito, K., Casati, G., (2011) Phys. Rev. Lett., 106, p. 230602. , PRLTAO 0031-9007 
504 |a G. Benenti, G. Casati, T. Prosen, and K. Saito, arXiv:1311.4430; Brandner, K., Saito, K., Seifert, U., (2013) Phys. Rev. Lett., 110, p. 070603. , PRLTAO 0031-9007 
504 |a Juergens, S., Haupt, F., Moskalets, M., Splettstoesser, J., (2013) Phys. Rev. B, 87, p. 245423. , PRBMDO 1098-0121 
504 |a F. Haupt, M. Leijnse, H. L. Calvo, L. Classen, J. Splettstoesser, and M. R. Wegewijs, arXiv:1306.4343; Jiang, J.-H., Entin-Wohlman, O., Imry, Y., (2012) Phys. Rev. B, 85, p. 075412. , PRBMDO 1098-0121 
504 |a Entin-Wohlman, O., Jiang, J.-H., Imry, Y., (2014) Phys. Rev. e, 89, p. 012123 
504 |a Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A., (2012) Nat. Nanotechnol., 7, p. 301. , 1748-3387 
504 |a Benyamini, A., Hamo, A., Viola Kusminskiy, S., Von Oppen, F., Ilani, S., (2014) Nat. Phys., 10, p. 151. , 1745-2473 
504 |a Lü, J.-T., Hedegard, P., Brandbyge, M., (2011) Phys. Rev. Lett., 107, p. 046801. , PRLTAO 0031-9007 
504 |a Koch, J., Von Oppen, F., Andreev, A.V., (2006) Phys. Rev. B, 74, p. 205438. , PRBMDO 1098-0121 
504 |a Pistolesi, F., Blanter Ya., M., Martin, I., (2008) Phys. Rev. B, 78, p. 085127. , PRBMDO 1098-0121 
504 |a Bode, N., Kusminskiy, S.V., Egger, R., Von Oppen, F., (2011) Phys. Rev. Lett., 107, p. 036804. , PRLTAO 0031-9007 
504 |a Bode, N., Viola Kusminskiy, S., Egger, R., Von Oppen, F., (2012) Beilstein J. Nanotechnol., 3, p. 144. , 2190-4286 
504 |a Engquist, H.L., Anderson, P.W., (1981) Phys. Rev. B, 24, p. 1151. , PRBMDO 0163-1829 
504 |a Cugliandolo, L.F., Kurchan, J., Peliti, L., (1997) Phys. Rev. e, 55, p. 3898. , 1063-651X 
504 |a Zamponi, F., Bonetto, F., Cugliandolo, L.F., Kurchan, J., J. Stat. Mech., 2005, p. P09013. , 1063-651X 
504 |a Aita, H., Arrachea, L., Naón, C., Fradkin, E., (2013) Phys. Rev. B, 88, p. 085122. , PRBMDO 1098-0121 
504 |a Arrachea, L., Fradkin, E., (2011) Phys. Rev. B, 84, p. 235436. , PRBMDO 1098-0121 
504 |a Cugliandolo, L., (2011) J. Phys. A, 44, p. 483001. , 1751-8113 
504 |a Koch, J., Von Oppen, F., Oreg, Y., Sela, E., (2004) Phys. Rev. B, 70, p. 195107. , PRBMDO 1098-0121 
504 |a Aleiner, I.L., Brouwer, P.W., Glazman, L.I., (2002) Phys. Rep., 358, p. 309. , PRPLCM 0370-1573 
504 |a Moskalets, M., Büttiker, M., (2004) Phys. Rev. B, 69, p. 205316. , PRBMDO 1098-0121 
504 |a Arrachea, L., Moskalets, M., (2006) Phys. Rev. B, 74, p. 245322. , PRBMDO 1098-0121 
506 |2 openaire  |e Política editorial 
520 3 |a An important goal in nanoelectromechanics is to cool the vibrational motion, ideally to its quantum ground state. Cooling by an applied charge current is a particularly simple and hence attractive strategy to this effect. Here we explore this phenomenon in the context of the general theory of thermoelectrics. In linear response, this theory describes thermoelectric refrigerators in terms of their cooling efficiency η and figure of merit ZT. We show that both concepts carry over to phonon cooling in nanoelectromechanical systems. As an important consequence, this allows us to discuss the efficiency of phonon refrigerators in relation to the fundamental Carnot efficiency. We illustrate these general concepts by thoroughly investigating a simple double-quantum-dot model with the dual advantage of being quite realistic experimentally and amenable to a largely analytical analysis theoretically. Specifically, we obtain results for the efficiency, the figure of merit, and the effective temperature of the vibrational motion in two regimes. In the quantum regime in which the vibrational motion is fast compared to the electronic degrees of freedom, we can describe the electronic and phononic dynamics of the model in terms of master equations. In the complementary classical regime of slow vibrational motion, the dynamics is described in terms of an appropriate Langevin equation. Remarkably, we find that the efficiency can approach the maximal Carnot value in the quantum regime, with large associated figures of merit. In contrast, the efficiencies are typically far from the Carnot limit in the classical regime. Our theoretical results should provide guidance to implementing efficient vibrational cooling of nanoelectromechanical systems in the laboratory. © 2014 American Physical Society.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales and IFIBA, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
593 |a Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, 14195, Germany 
700 1 |a Bode, N. 
700 1 |a Von Oppen, F. 
773 0 |d American Physical Society, 2014  |g v. 90  |k n. 12  |p Phys. Rev. B Condens. Matter Mater. Phys.  |x 10980121  |t Physical Review B - Condensed Matter and Materials Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907462218&doi=10.1103%2fPhysRevB.90.125450&partnerID=40&md5=bdaf4a78a6a26b1d5d3eb03df4fd27e0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevB.90.125450  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10980121_v90_n12_p_Arrachea  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v90_n12_p_Arrachea  |y Registro en la Biblioteca Digital 
961 |a paper_10980121_v90_n12_p_Arrachea  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75039